cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339747 a(n) = (5^(valuation(n, 5) + 1) - 1) / 4.

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 31, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 31, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 31, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 31
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 15 2020

Keywords

Comments

Sum of powers of 5 dividing n.
Denominator of the quotient sigma(5*n) / sigma(n).

Crossrefs

Programs

  • Mathematica
    Table[(5^(IntegerExponent[n, 5] + 1) - 1)/4, {n, 1, 100}]
    nmax = 100; CoefficientList[Series[Sum[5^k x^(5^k)/(1 - x^(5^k)), {k, 0, Floor[Log[5, nmax]] + 1}], {x, 0, nmax}], x] // Rest
  • PARI
    a(n) = (5^(valuation(n, 5) + 1) - 1)/4; \\ Amiram Eldar, Nov 27 2022

Formula

G.f.: Sum_{k>=0} 5^k * x^(5^k) / (1 - x^(5^k)).
L.g.f.: -log(Product_{k>=0} (1 - x^(5^k))).
Dirichlet g.f.: zeta(s) / (1 - 5^(1 - s)).
a(n) = sigma(n)/(sigma(5*n) - 5*sigma(n)), where sigma(n) = A000203(n). - Peter Bala, Jun 10 2022
From Amiram Eldar, Nov 27 2022: (Start)
Multiplicative with a(5^e) = (5^(e+1)-1)/4, and a(p^e) = 1 for p != 5.
Sum_{k=1..n} a(k) ~ n*log_5(n) + (1/2 + (gamma - 1)/log(5))*n, where gamma is Euler's constant (A001620). (End)