A339771 a(n) = Sum_{i=0..n} Sum_{j=0..n} 2^max(i,j).
1, 7, 27, 83, 227, 579, 1411, 3331, 7683, 17411, 38915, 86019, 188419, 409603, 884739, 1900547, 4063235, 8650755, 18350083, 38797315, 81788931, 171966467, 360710147, 754974723, 1577058307, 3288334339, 6845104131, 14227079171, 29527900163, 61203283971
Offset: 0
Examples
a(3) = 5*2^4 + 3 = 83.
References
- Eric Billault, Walter Damin, Robert Ferréol, Rodolphe Garin, MPSI Classes Prépas - Khôlles de Maths, Exercices corrigés, Ellipses, 2012, exercice 2.22 (2), pp. 26, 43-44.
Links
- Index entries for linear recurrences with constant coefficients, signature (5,-8,4).
Programs
-
Maple
seq((2*n-1)*2^(n+1)+3,n=0..40);
-
Mathematica
Table[(2*n - 1)*2^(n + 1) + 3, {n, 0, 29}] (* Amiram Eldar, Dec 16 2020 *)
-
PARI
a(n) = sum(i=0, n, sum(j=0, n, 2^max(i,j))); \\ Michel Marcus, Dec 16 2020
-
Python
def A339771(): a, b, c = 1, 7, 27 yield(a); yield(b) while True: yield c z = 4*a - 8*b + 5*c a, b, c = b, c, z a = A339771() print([next(a) for in range(30)]) # _Peter Luschny, Dec 17 2020
Formula
a(n) = (2*n-1) * 2^(n+1) + 3.
G.f.: -(2*x+1)/((x-1)*(2*x-1)^2). - Alois P. Heinz, Dec 16 2020
E.g.f: 3*exp(x) + 2*exp(2*x)*(4*x - 1). - Stefano Spezia, Dec 16 2020
a(n) = (2*A027981(n)+1)/3 for n >= 1. - Hugo Pfoertner, Dec 17 2020