A339776 Numbers m such that tau(m) = tau(m + 1) - 1 = tau(m + 2), where tau(k) = the number of divisors of k (A000005).
3, 252003, 293763, 770883, 1444803, 2630883, 6543363, 8421603, 9375843, 18992163, 19731363, 21883683, 22108803, 25786083, 25989603, 32512803, 35259843, 48972003, 98049603, 101566083, 132204003, 155201763, 160224963, 162766563, 187197123, 208455843, 291658083
Offset: 1
Keywords
Examples
tau(3) = 2, tau(4) = 3, tau(5) = 2.
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[m: m in [2..10^6] | #Divisors(m + 1) - 1 eq #Divisors(m) and #Divisors(m + 2) eq #Divisors(m)]
-
Mathematica
d1 = 1; d2 = 2; s = {}; Do[d3 = DivisorSigma[0, n]; If[Equal @@ {d1, d2 - 1, d3}, AppendTo[s, n - 2]]; d1 = d2; d2 = d3, {n, 3, 10^7}]; s (* Amiram Eldar, Dec 17 2020 *)
-
PARI
isok(m) = my(nb = numdiv(m)); (numdiv(m+2) == nb) && (numdiv(m+1) == nb+1); \\ Michel Marcus, Dec 18 2020
Extensions
More terms from Amiram Eldar, Dec 16 2020
Comments