cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A339777 Numbers m such that tau(m) = tau(m + 1) + 1 = tau(m + 2), where tau(k) = the number of divisors of k (A000005).

Original entry on oeis.org

8, 110888, 149768, 1119363, 1172888, 2676495, 3143528, 4782968, 5895183, 8596623, 9168783, 15896168, 19114383, 28174863, 48052623, 50523663, 58186383, 72641528, 82664463, 98168463, 113465103, 139523343, 178810383, 208860303, 223681935, 230675343, 248755983, 249260943
Offset: 1

Views

Author

Jaroslav Krizek, Dec 16 2020

Keywords

Comments

Corresponding values of tau(a(n)): 4, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, ...
Triplets of [tau(a(n)), tau(a(n) + 1), tau(a(n) + 2)] = [tau(a(n)), tau(a(n)) - 1, tau(a(n))]: [4, 3, 4], [16, 15, 16], [16, 15, 16], [16, 15, 16], [16, 15, 16], [16, 15, 16], [16, 15, 16], [16, 15, 16], [16, 15, 16], ...
a(n) is one less than a perfect square. - David A. Corneth, Dec 29 2020

Examples

			tau(8) = 4, tau(9) = 3, tau(10) = 4.
		

Crossrefs

Subsequence of A005563.
Intersection of A062832 and A068208.

Programs

  • Magma
    [m: m in [2..10^6] | #Divisors(m + 1) + 1 eq #Divisors(m) and #Divisors(m + 2) eq #Divisors(m)]
    
  • Mathematica
    d1 = 1; d2 = 2; s = {}; Do[d3 = DivisorSigma[0, n]; If[Equal @@ {d1, d2 + 1, d3}, AppendTo[s, n - 2]]; d1 = d2; d2 = d3, {n, 3, 10^7}]; s (* Amiram Eldar, Dec 17 2020 *)
    Position[Partition[DivisorSigma[0,Range[59*10^5]],3,1],?(#[[1]]==#[[2]]+1==#[[3]]&),1,Heads->False]//Flatten (* _Harvey P. Dale, May 25 2023 *)
  • PARI
    isok(m) =  my(nb = numdiv(m)); (numdiv(m+2) == nb) && (numdiv(m+1) == nb-1); \\ Michel Marcus, Dec 18 2020

Extensions

More terms from Amiram Eldar, Dec 16 2020
Showing 1-1 of 1 results.