cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A340030 Triangle read by rows: T(n,k) is the number of hypergraphs on n labeled vertices with k edges and all vertices having even degree, 0 <= k < 2^n.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 7, 7, 0, 0, 1, 1, 0, 0, 35, 105, 168, 280, 435, 435, 280, 168, 105, 35, 0, 0, 1, 1, 0, 0, 155, 1085, 5208, 22568, 82615, 247845, 628680, 1383096, 2648919, 4414865, 6440560, 8280720, 9398115, 9398115, 8280720, 6440560, 4414865, 2648919, 1383096, 628680, 247845, 82615, 22568, 5208, 1085, 155, 0, 0, 1
Offset: 0

Views

Author

Andrew Howroyd, Jan 09 2021

Keywords

Comments

Hypergraphs are graphs in which an edge is connected to a nonempty subset of vertices rather than exactly two of them. An edge is a nonempty subset of vertices.
Equivalently, T(n,k) is the number of subsets of {1..2^n-1} with k elements such that the bitwise-xor of the elements is zero.
Also the coefficients of polynomials p_{n}(x) which have the representation
p_{n}(x) = (x + 1)^(2*(n - 1) - 1)*q_{n - 1}(x), where q_{n}(x) are the polynomials defined in A340263, and n >= 2. - Peter Luschny, Jan 10 2021

Examples

			Triangle begins:
[0]  1;
[1]  1, 0;
[2]  1, 0, 0,  1;
[3]  1, 0, 0,  7,   7,   0,   0,   1;
[4]  1, 0, 0, 35, 105, 168, 280, 435, 435, 280, 168, 105, 35, 0, 0, 1;
		

Crossrefs

Row sums are A016031(n+1).
Column k=3 gives A006095.

Programs

  • PARI
    T(n,k) = {(binomial(2^n-1, k) + (-1)^((k+1)\2)*(2^n-1)*binomial(2^(n-1)-1, k\2))/2^n}
    { for(n=0, 5, print(vector(2^n, k, T(n,k-1)))) }

Formula

T(n,k) = (binomial(2^n-1, k) + (-1)^ceiling(k/2)*(2^n-1)*binomial(2^(n-1)-1, floor(k/2)))/2^n.
T(n,2*k) + T(n,2*k+1) = binomial(2^n-1, k)/2^n = A281123(n,k).
T(n, k) = T(n, 2^n-1-k) for n >= 2.

A340312 Triangle read by rows: T(n,k) is the number of subsets of {0..2^n-1} with k elements such that the bitwise-xor of all the subset members gives zero, 0 <= k <= 2^n.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 7, 14, 7, 0, 1, 1, 1, 1, 0, 35, 140, 273, 448, 715, 870, 715, 448, 273, 140, 35, 0, 1, 1, 1, 1, 0, 155, 1240, 6293, 27776, 105183, 330460, 876525, 2011776, 4032015, 7063784, 10855425, 14721280, 17678835, 18796230, 17678835, 14721280, 10855425, 7063784, 4032015, 2011776, 876525, 330460, 105183, 27776, 6293, 1240, 155, 0, 1, 1
Offset: 0

Views

Author

Jianing Song, Jan 04 2021

Keywords

Comments

Sum_{k=0..2^n} T(n, k) gives the total number of subsets with bitwise-xor of all the subset members zero. There are in total 2^(2^n - n) such subsets of {0, 1, ..., 2^n-1}, see A300361 and the Mathematics Stack Exchange link below.
Equivalently, T(n, k) is the number of subsets of the vector space (F_2)^n such that the sum of elements in the subset is the zero vector.
T(n, k) is symmetric, that is, T(n, k) = T(n, 2^n-k) for k = 0..2^n, since if the bitwise-xor of the members in S is zero, then the complement of S in {0, 1, ..., 2^n-1} also has this property.

Examples

			Triangle begins:
[0]  1, 1;
[1]  1, 1, 0;
[2]  1, 1, 0, 1, 1;
[3]  1, 1, 0, 7, 14, 7, 0, 1, 1;
[4]  1, 1, 0, 35, 140, 273, 448, 715, 870, 715, 448, 273, 140, 35, 0, 1, 1;
[5]  1, 1, 0, 155, 1240, 6293, 27776, 105183, 330460, 876525, 2011776, 4032015, 7063784, 10855425, 14721280, 17678835, 18796230, 17678835, 14721280, 10855425, 7063784, 4032015, 2011776, 876525, 330460, 105183, 27776, 6293, 1240, 155, 0, 1, 1;
T(n,0) = 1 since the bitwise-xor of all the elements in the empty set is the identity of bitwise-xor (0), hence the empty set meets the requirement.
T(n,1) = 1 since the only such subset is {0}.
T(n,2) = 0 since no distinct a, b have a ^ b = 0.
T(n,3) = A006095(n): if distinct a, b, c have a ^ b ^ c = 0, then c = a ^ b, and a, b must both be nonzero since a = 0 implies b = c. On the other hand, if a, b are nonequal and are both nonzero, then c = a ^ b has c != a and c != b since c = a implies b = 0. So the total number of triples (a, b, c) is (2^n-1)*(2^n-2), and the total number of subsets {a, b, c} is (2^n-1)*(2^n-2)/3! = A006095(n).
T(n,4) = A016290(n-2): if distinct a, b, c, d have a ^ b ^ c ^ d = 0, then d = a ^ b ^ c. On the other hand, if a, b, c are distinct, then d = a ^ b ^ c has d != a, d != b, d != c since d = a implies b = c. So the total number of quadruples (a, b, c, d) is 2^n*(2^n-1)*(2^n-2), and the total number of subsets {a, b, c, d} is 2^n*(2^n-1)*(2^n-2)/4! = A016290(n-2).
		

Crossrefs

Cf. A000120 (hamming weight of n), A300361 (row sums).
Cf. A340263 (irreducible (?) factor if T(n,k) is seen as representing polynomials).
Cf. A340259(n) = T(n, 2^(n-1)), the central term of row n.
Cf. A340030 (case that only nonzero elements allowed).
Cf. A006095 (k=3 column), A016290 (k=4 column); cf. also A010080-A010084 and A281123. - Jon E. Schoenfield, Jan 06 2021

Programs

  • C
    /* Generating program for T(4,k), see link. */
    
  • Maple
    A340312_row := proc(n) local a, b, c; c := 2^(n-1);
    if n = 0 then return [1, 1] fi;
    b := n -> add(binomial(2^n, 2*k)*x^(2*k), k = 0..2^n);
    a := n -> x*mul(b(k), k = 0..n);
    (x + 1)^c*(b(n-1) - (c-1)*a(n-2));
    [seq(coeff(expand(%), x, j), j = 0..2*c)] end:
    for n from 0 to 6 do A340312_row(n) od; # Peter Luschny, Jan 06 2021
  • Mathematica
    T[n_, k_] := Binomial[2^n, k]/2^n + If[EvenQ[k], (-1)^(k/2)*(1-1/2^n)* Binomial[2^(n-1), k/2], 0];
    Table[T[n, k], {n, 0, 5}, {k, 0, 2^n}] // Flatten (* Jean-François Alcover, Jan 14 2021, after Andrew Howroyd *)
  • PARI
    T(n, k)={binomial(2^n, k)/2^n + if(k%2==0, (-1)^(k/2)*(1-1/2^n)*binomial(2^(n-1), k/2))} \\ Andrew Howroyd, Jan 09 2021
    
  • SageMath
    def A340312():
        a, b, c = 1, 1, 1
        yield [1, 1]
        yield [1, 1, 0]
        while True:
            c *= 2
            a *= b
            b = sum(binomial(c, 2 * k) * x^(2 * k) for k in range(c + 1))
            p = (x + 1)^c * (b - (c - 1) * x * a)
            yield expand(p).list()
    A340312_row = A340312()
    for _ in range(6):
        print(next(A340312_row)) # Peter Luschny, Jan 07 2021

Formula

T(n, k) = [x^k] p(n; x) where p(n; x) = (x + 1)^c*(b(n-1) - (c-1)*a(n-2)), b(n) = Sum_{k=0..2^n} binomial(2^n, 2*k)*x^(2*k), a(n) = x*Product_{k=0..n} b(k) and c = 2^(n-1), for n >= 1. - Peter Luschny, Jan 06 2021
T(n+1, k) = [x^k] (x+1)^(2^n)*p_n(x) where p_n(x) are the polynomials defined in A340263. - Peter Luschny, Jan 06 2021
From Andrew Howroyd, Jan 09 2021: (Start)
First take any subset of k-1 elements and append the bitwise-xor of the elements. The final element will either be a duplicate or not and consideration of the two cases leads to a formula linking T(n,k) and T(n,k-2) with binomial(2^n,k-1).
T(n, k) = (1/k)*(binomial(2^n,k-1) - (2^n-(k-2))*T(n,k-2)) for k >= 2.
T(n, k) = binomial(2^n, k)/2^n for odd k.
T(n, k) = binomial(2^n, k)/2^n + (-1)^(k/2)*(1-1/2^n)*binomial(2^(n-1), k/2) for even k.
T(n, k) = [x^k] ((1+x)^(2^n) + (2^n-1)*(1-x^2)^(2^(n-1)))/2^n.
T(n, k) = A340030(n,k-1) + A340030(n,k).
(End)

Extensions

More terms from Andrew Howroyd and Jon E. Schoenfield.

A340259 a(n) = A340312(n, 2^(n-1)). a(n) is the central term of row n of A340312.

Original entry on oeis.org

1, 0, 14, 870, 18796230, 28634752793916486, 187118328452563149209991044344449606, 22533823529098462258163079522899558179092788838542277982316450977506091590
Offset: 1

Views

Author

Peter Luschny, Jan 06 2021

Keywords

Comments

a(9) = 2299131884087642202247291403507120751687796592498104258 * C, where C is a composite factor with 96 digits.
C = P47*P49, with P47 = 88967307877356450624418823383132738084943851019 and
P49 = 4512180962860489443011495305279720577473472225641. - Hugo Pfoertner, Jan 09 2021

Crossrefs

Programs

  • Maple
    seq(A340312_row(n)[2^(n-1)+1], n = 1..8);
  • PARI
    a(n) = {if(n<=2, n==1, (2*binomial(2^n-1, 2^(n-1)) + (2^n-1)*binomial(2^(n-1), 2^(n-2)))/2^n)} \\ Andrew Howroyd, Jan 09 2021

Formula

a(n) = (2*binomial(2^n-1, 2^(n-1)) + (2^n-1)*binomial(2^(n-1), 2^(n-2)))/2^n for n >= 3. - Andrew Howroyd, Jan 09 2021

A340555 T(n, k) = [x^k] (2^n-1)*2^(-n-1)*((x+1)^(2^n) - (x-1)^(2^n)). Irregular triangle read by rows, for n >= 0 and 0 <= k <= 2^n.

Original entry on oeis.org

0, 0, 1, 0, 0, 3, 0, 3, 0, 0, 7, 0, 49, 0, 49, 0, 7, 0, 0, 15, 0, 525, 0, 4095, 0, 10725, 0, 10725, 0, 4095, 0, 525, 0, 15, 0, 0, 31, 0, 4805, 0, 195083, 0, 3260673, 0, 27172275, 0, 124992465, 0, 336518175, 0, 548043885, 0, 548043885, 0, 336518175, 0, 124992465, 0, 27172275, 0, 3260673, 0, 195083, 0, 4805, 0, 31, 0
Offset: 0

Views

Author

Peter Luschny, Jan 11 2021

Keywords

Examples

			Triangle begins:
[0] [0]
[1] [0, 1, 0]
[2] [0, 3, 0, 3, 0]
[3] [0, 7, 0, 49, 0, 49, 0, 7, 0]
[4] [0, 15, 0, 525, 0, 4095, 0, 10725, 0, 10725, 0, 4095, 0, 525, 0, 15, 0]
[5] [0, 31, 0, 4805, 0, 195083, 0, 3260673, 0, 27172275, 0, 124992465, 0, 336518175, 0, 548043885, 0, 548043885, 0, 336518175, 0, 124992465, 0, 27172275, 0, 3260673, 0, 195083, 0, 4805, 0, 31, 0]
		

Crossrefs

Cf. A340263.

Programs

  • Maple
    CoeffList := p -> [op(PolynomialTools:-CoefficientList(p, x)),0]:
    Tpoly := proc(n) (2^n-1)*2^(-n-1)*((x+1)^(2^n) - (x-1)^(2^n)) end:
    seq(print(CoeffList(Tpoly(n))), n=0..5);
  • SageMath
    def A340555():
        a, b, c = 1, 1, 1
        yield [0]
        while True:
            c *= 2
            a *= b
            b = sum(binomial(c, 2 * k) * x ^ (2 * k) for k in range(c + 1))
            q = ((b - (c - 1) * x * a)).list()
            yield [-q[i] * (i % 2) for i in range(c + 1)]
    A340555_row = A340555()
    for _ in range(6):
        print(next(A340555_row))

Formula

A340555(n, k) = -A340263(n, k) * (k mod 2).
Showing 1-4 of 4 results.