A340030 Triangle read by rows: T(n,k) is the number of hypergraphs on n labeled vertices with k edges and all vertices having even degree, 0 <= k < 2^n.
1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 7, 7, 0, 0, 1, 1, 0, 0, 35, 105, 168, 280, 435, 435, 280, 168, 105, 35, 0, 0, 1, 1, 0, 0, 155, 1085, 5208, 22568, 82615, 247845, 628680, 1383096, 2648919, 4414865, 6440560, 8280720, 9398115, 9398115, 8280720, 6440560, 4414865, 2648919, 1383096, 628680, 247845, 82615, 22568, 5208, 1085, 155, 0, 0, 1
Offset: 0
Examples
Triangle begins: [0] 1; [1] 1, 0; [2] 1, 0, 0, 1; [3] 1, 0, 0, 7, 7, 0, 0, 1; [4] 1, 0, 0, 35, 105, 168, 280, 435, 435, 280, 168, 105, 35, 0, 0, 1;
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..2046 (rows 0..10)
- Wikipedia, Hypergraph.
Crossrefs
Programs
-
PARI
T(n,k) = {(binomial(2^n-1, k) + (-1)^((k+1)\2)*(2^n-1)*binomial(2^(n-1)-1, k\2))/2^n} { for(n=0, 5, print(vector(2^n, k, T(n,k-1)))) }
Formula
T(n,k) = (binomial(2^n-1, k) + (-1)^ceiling(k/2)*(2^n-1)*binomial(2^(n-1)-1, floor(k/2)))/2^n.
T(n,2*k) + T(n,2*k+1) = binomial(2^n-1, k)/2^n = A281123(n,k).
T(n, k) = T(n, 2^n-1-k) for n >= 2.
Comments