cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A340312 Triangle read by rows: T(n,k) is the number of subsets of {0..2^n-1} with k elements such that the bitwise-xor of all the subset members gives zero, 0 <= k <= 2^n.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 7, 14, 7, 0, 1, 1, 1, 1, 0, 35, 140, 273, 448, 715, 870, 715, 448, 273, 140, 35, 0, 1, 1, 1, 1, 0, 155, 1240, 6293, 27776, 105183, 330460, 876525, 2011776, 4032015, 7063784, 10855425, 14721280, 17678835, 18796230, 17678835, 14721280, 10855425, 7063784, 4032015, 2011776, 876525, 330460, 105183, 27776, 6293, 1240, 155, 0, 1, 1
Offset: 0

Views

Author

Jianing Song, Jan 04 2021

Keywords

Comments

Sum_{k=0..2^n} T(n, k) gives the total number of subsets with bitwise-xor of all the subset members zero. There are in total 2^(2^n - n) such subsets of {0, 1, ..., 2^n-1}, see A300361 and the Mathematics Stack Exchange link below.
Equivalently, T(n, k) is the number of subsets of the vector space (F_2)^n such that the sum of elements in the subset is the zero vector.
T(n, k) is symmetric, that is, T(n, k) = T(n, 2^n-k) for k = 0..2^n, since if the bitwise-xor of the members in S is zero, then the complement of S in {0, 1, ..., 2^n-1} also has this property.

Examples

			Triangle begins:
[0]  1, 1;
[1]  1, 1, 0;
[2]  1, 1, 0, 1, 1;
[3]  1, 1, 0, 7, 14, 7, 0, 1, 1;
[4]  1, 1, 0, 35, 140, 273, 448, 715, 870, 715, 448, 273, 140, 35, 0, 1, 1;
[5]  1, 1, 0, 155, 1240, 6293, 27776, 105183, 330460, 876525, 2011776, 4032015, 7063784, 10855425, 14721280, 17678835, 18796230, 17678835, 14721280, 10855425, 7063784, 4032015, 2011776, 876525, 330460, 105183, 27776, 6293, 1240, 155, 0, 1, 1;
T(n,0) = 1 since the bitwise-xor of all the elements in the empty set is the identity of bitwise-xor (0), hence the empty set meets the requirement.
T(n,1) = 1 since the only such subset is {0}.
T(n,2) = 0 since no distinct a, b have a ^ b = 0.
T(n,3) = A006095(n): if distinct a, b, c have a ^ b ^ c = 0, then c = a ^ b, and a, b must both be nonzero since a = 0 implies b = c. On the other hand, if a, b are nonequal and are both nonzero, then c = a ^ b has c != a and c != b since c = a implies b = 0. So the total number of triples (a, b, c) is (2^n-1)*(2^n-2), and the total number of subsets {a, b, c} is (2^n-1)*(2^n-2)/3! = A006095(n).
T(n,4) = A016290(n-2): if distinct a, b, c, d have a ^ b ^ c ^ d = 0, then d = a ^ b ^ c. On the other hand, if a, b, c are distinct, then d = a ^ b ^ c has d != a, d != b, d != c since d = a implies b = c. So the total number of quadruples (a, b, c, d) is 2^n*(2^n-1)*(2^n-2), and the total number of subsets {a, b, c, d} is 2^n*(2^n-1)*(2^n-2)/4! = A016290(n-2).
		

Crossrefs

Cf. A000120 (hamming weight of n), A300361 (row sums).
Cf. A340263 (irreducible (?) factor if T(n,k) is seen as representing polynomials).
Cf. A340259(n) = T(n, 2^(n-1)), the central term of row n.
Cf. A340030 (case that only nonzero elements allowed).
Cf. A006095 (k=3 column), A016290 (k=4 column); cf. also A010080-A010084 and A281123. - Jon E. Schoenfield, Jan 06 2021

Programs

  • C
    /* Generating program for T(4,k), see link. */
    
  • Maple
    A340312_row := proc(n) local a, b, c; c := 2^(n-1);
    if n = 0 then return [1, 1] fi;
    b := n -> add(binomial(2^n, 2*k)*x^(2*k), k = 0..2^n);
    a := n -> x*mul(b(k), k = 0..n);
    (x + 1)^c*(b(n-1) - (c-1)*a(n-2));
    [seq(coeff(expand(%), x, j), j = 0..2*c)] end:
    for n from 0 to 6 do A340312_row(n) od; # Peter Luschny, Jan 06 2021
  • Mathematica
    T[n_, k_] := Binomial[2^n, k]/2^n + If[EvenQ[k], (-1)^(k/2)*(1-1/2^n)* Binomial[2^(n-1), k/2], 0];
    Table[T[n, k], {n, 0, 5}, {k, 0, 2^n}] // Flatten (* Jean-François Alcover, Jan 14 2021, after Andrew Howroyd *)
  • PARI
    T(n, k)={binomial(2^n, k)/2^n + if(k%2==0, (-1)^(k/2)*(1-1/2^n)*binomial(2^(n-1), k/2))} \\ Andrew Howroyd, Jan 09 2021
    
  • SageMath
    def A340312():
        a, b, c = 1, 1, 1
        yield [1, 1]
        yield [1, 1, 0]
        while True:
            c *= 2
            a *= b
            b = sum(binomial(c, 2 * k) * x^(2 * k) for k in range(c + 1))
            p = (x + 1)^c * (b - (c - 1) * x * a)
            yield expand(p).list()
    A340312_row = A340312()
    for _ in range(6):
        print(next(A340312_row)) # Peter Luschny, Jan 07 2021

Formula

T(n, k) = [x^k] p(n; x) where p(n; x) = (x + 1)^c*(b(n-1) - (c-1)*a(n-2)), b(n) = Sum_{k=0..2^n} binomial(2^n, 2*k)*x^(2*k), a(n) = x*Product_{k=0..n} b(k) and c = 2^(n-1), for n >= 1. - Peter Luschny, Jan 06 2021
T(n+1, k) = [x^k] (x+1)^(2^n)*p_n(x) where p_n(x) are the polynomials defined in A340263. - Peter Luschny, Jan 06 2021
From Andrew Howroyd, Jan 09 2021: (Start)
First take any subset of k-1 elements and append the bitwise-xor of the elements. The final element will either be a duplicate or not and consideration of the two cases leads to a formula linking T(n,k) and T(n,k-2) with binomial(2^n,k-1).
T(n, k) = (1/k)*(binomial(2^n,k-1) - (2^n-(k-2))*T(n,k-2)) for k >= 2.
T(n, k) = binomial(2^n, k)/2^n for odd k.
T(n, k) = binomial(2^n, k)/2^n + (-1)^(k/2)*(1-1/2^n)*binomial(2^(n-1), k/2) for even k.
T(n, k) = [x^k] ((1+x)^(2^n) + (2^n-1)*(1-x^2)^(2^(n-1)))/2^n.
T(n, k) = A340030(n,k-1) + A340030(n,k).
(End)

Extensions

More terms from Andrew Howroyd and Jon E. Schoenfield.

A362905 Array read by antidiagonals: T(n,k) is the number of n element multisets of length k vectors over GF(2) that sum to zero.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 4, 2, 1, 1, 1, 8, 5, 3, 1, 1, 1, 16, 15, 11, 3, 1, 1, 1, 32, 51, 50, 14, 4, 1, 1, 1, 64, 187, 276, 99, 24, 4, 1, 1, 1, 128, 715, 1768, 969, 232, 30, 5, 1, 1, 1, 256, 2795, 12496, 11781, 3504, 429, 45, 5, 1, 1, 1, 512, 11051, 93600, 162877, 73440, 10659, 835, 55, 6, 1
Offset: 0

Views

Author

Andrew Howroyd, May 27 2023

Keywords

Comments

Equivalently, T(n,k) is the number multisets with n elements drawn from {0..2^k-1} such that the bitwise-xor of all the elements gives zero.
T(n,k) is the number of equivalence classes of n X k binary matrices with an even number of 1's in each column under permutation of rows.
T(n,k) is the number of equivalence classes of n X k binary matrices under permutation of rows and complementation of columns.

Examples

			Array begins:
=========================================
n/k| 0 1  2   3     4      5        6 ...
---+-------------------------------------
0  | 1 1  1   1     1      1        1 ...
1  | 1 1  1   1     1      1        1 ...
2  | 1 2  4   8    16     32       64 ...
3  | 1 2  5  15    51    187      715 ...
4  | 1 3 11  50   276   1768    12496 ...
5  | 1 3 14  99   969  11781   162877 ...
6  | 1 4 24 232  3504  73440  1878976 ...
7  | 1 4 30 429 10659 394383 18730855 ...
  ...
		

Crossrefs

Columns k=0..4 are A000012, A004526(n+2), A053307, A362906, A363350.
Rows n=2..3 are A000079, A007581.
Main diagonal is A363351.

Programs

  • Mathematica
    A362905[n_,k_]:=(Binomial[2^k+n-1,n]+If[EvenQ[n],(2^k-1)Binomial[2^(k-1)+n/2-1,n/2],0])/2^k;Table[A362905[n-k,k],{n,0,15},{k,n,0,-1}] (* Paolo Xausa, Nov 19 2023 *)
  • PARI
    T(n,k)={(binomial(2^k+n-1, n) + if(n%2==0, (2^k-1)*binomial(2^(k-1)+n/2-1,n/2)))/2^k}

Formula

T(n,k) = binomial(2^k+n-1, n)/2^k for odd n;
T(n,k) = (binomial(2^k+n-1, n) + (2^k-1)*binomial(2^(k-1)+n/2-1, n/2))/2^k for even n.
G.f. of column k: (1/(1-x)^(2^k) + (2^k-1)/(1-x^2)^(2^(k-1)))/2^k.

A010087 Weight distribution of d=3 Hamming code of length 63.

Original entry on oeis.org

1, 0, 0, 651, 9765, 109368, 1057224, 8649279, 60544953, 369776680, 1996794072, 9621890019, 41694856749, 163568562192, 584173436400, 1908310936455, 5724932809365, 15827726179440, 40448633569680
Offset: 0

Views

Author

Keywords

Examples

			The weight distribution is:
i A_i
0 1
3 651
4 9765
5 109368
6 1057224
7 8649279
8 60544953
9 369776680
10 1996794072
11 9621890019
12 41694856749
13 163568562192
14 584173436400
15 1908310936455
16 5724932809365
17 15827726179440
18 40448633569680
19 95799462143175
20 210758816714985
21 431553634502760
22 823875120414360
23 1468647185710635
24 2447745309517725
25 3818482327223928
26 5580858785942664
27 7647844002734159
28 9832942289229633
29 11867343566087520
30 13449656041565856
31 14317376396958243
32 14317376396958243
33 13449656041565856
34 11867343566087520
35 9832942289229633
36 7647844002734159
37 5580858785942664
38 3818482327223928
39 2447745309517725
40 1468647185710635
41 823875120414360
42 431553634502760
43 210758816714985
44 95799462143175
45 40448633569680
46 15827726179440
47 5724932809365
48 1908310936455
49 584173436400
50 163568562192
51 41694856749
52 9621890019
53 1996794072
54 369776680
55 60544953
56 8649279
57 1057224
58 109368
59 9765
60 651
63 1
		

References

  • F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 129.

Crossrefs

Row 6 of A340030.

Programs

  • Mathematica
    m:=63; RecurrenceTable[{a[n]==(Binomial[m,n-1]-a[n-1]-(m-n+2)*a[n-2])/n,
    a[0]==1,a[1]==0}, a,{n,0,m}] (* _Georg Fischer, Apr 14 2020 *)
  • PARI
    Vecrev((1+x)^63 + 63*(1-x)*(1-x^2)^31)/64 \\ Andrew Howroyd, Jan 11 2021

Formula

Recurrence: a(n) = (binomial(m,n-1) - a(n-1) - (m-n+2)*a(n-2))/n for n > 1, a(0)=1, a(1)=0 with m = 63. - Georg Fischer, Apr 14 2020

A010088 Weight distribution of d=3 Hamming code of length 127.

Original entry on oeis.org

1, 0, 0, 2667, 82677, 1984248, 40346376, 698136399, 10472045985, 138455313640, 1633772700952, 17377481697723, 167982323077989, 1485996809606736, 12100259735369136, 91155294690805839
Offset: 0

Views

Author

N. J. A. Sloane. Entry revised Jul 18 2009

Keywords

Examples

			The weight distribution is:
i A_i
0 1
3 2667
4 82677
5 1984248
6 40346376
7 698136399
8 10472045985
9 138455313640
10 1633772700952
11 17377481697723
12 167982323077989
13 1485996809606736
14 12100259735369136
15 91155294690805839
16 638087062835640873
17 4166333146052853552
18 25460924781434105040
19 146065305483269160835
20 788752649609653468509
21 4018882547238172355016
22 19363706818511194074168
23 88399531131386119148007
24 383064634902673182974697
25 1578226295785457917668888
26 6191503160389104138547176
27 23160808118541815153990579
28 82717171851935054121394925
29 282379310804718006044407200
30 922439081962078819745063520
31 2886341643559263104694304455
32 8659024930677789314082913365
33 24927496012555862201427876960
34 68917194858242677851006483360
35 183122832051905648227574489415
36 467980570799314434359357028505
37 1150979241695602290812068499320
38 2726003467173794899291741182600
39 6220879707140218581918768313275
40 13685935355708480880221290289205
41 29040887218210637159315728230120
42 59464673827764637992884586375960
43 117546448264185993885197347489815
44 224406855777082351962649481571465
45 413905978433285078143161128429360
46 737832396337595139298678533287120
47 1271583491560536557879927855087355
48 2119305819267560929799879758478925
49 3416839994329332521610566413573200
50 5330270391153758733712483605174192
51 8047663139585087324166406321172943
52 11761969204008973781473978469406609
53 16644296043408924306591066468540936
54 22808850133560377753476646642074616
55 30273564722725593421190356524797059
56 38923154643504334398673315531881933
57 48483227713838730919011449081237592
58 58514240344288123522944852339424680
59 68431908199252213890524837937373695
60 77556162625819175742594816329023521
61 85184637638194830580902393173363904
62 90680420711626755134508999184548672
63 93559164226281574604995522172224803
64 93559164226281574604995522172224803
65 90680420711626755134508999184548672
66 85184637638194830580902393173363904
67 77556162625819175742594816329023521
68 68431908199252213890524837937373695
69 58514240344288123522944852339424680
70 48483227713838730919011449081237592
71 38923154643504334398673315531881933
72 30273564722725593421190356524797059
73 22808850133560377753476646642074616
74 16644296043408924306591066468540936
75 11761969204008973781473978469406609
76 8047663139585087324166406321172943
77 5330270391153758733712483605174192
78 3416839994329332521610566413573200
79 2119305819267560929799879758478925
80 1271583491560536557879927855087355
81 737832396337595139298678533287120
82 413905978433285078143161128429360
83 224406855777082351962649481571465
84 117546448264185993885197347489815
85 59464673827764637992884586375960
86 29040887218210637159315728230120
87 13685935355708480880221290289205
88 6220879707140218581918768313275
89 2726003467173794899291741182600
90 1150979241695602290812068499320
91 467980570799314434359357028505
92 183122832051905648227574489415
93 68917194858242677851006483360
94 24927496012555862201427876960
95 8659024930677789314082913365
96 2886341643559263104694304455
97 922439081962078819745063520
98 282379310804718006044407200
99 82717171851935054121394925
100 23160808118541815153990579
101 6191503160389104138547176
102 1578226295785457917668888
103 383064634902673182974697
104 88399531131386119148007
105 19363706818511194074168
106 4018882547238172355016
107 788752649609653468509
108 146065305483269160835
109 25460924781434105040
110 4166333146052853552
111 638087062835640873
112 91155294690805839
113 12100259735369136
114 1485996809606736
115 167982323077989
116 17377481697723
117 1633772700952
118 138455313640
119 10472045985
120 698136399
121 40346376
122 1984248
123 82677
124 2667
127 1
		

References

  • F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 129.

Crossrefs

Row 7 of A340030.

Programs

  • Mathematica
    m:=127; RecurrenceTable[{a[n]==(Binomial[m,n-1]-a[n-1]-(m-n+2)*a[n-2])/n,
    a[0]==1,a[1]==0}, a, {n,0,127}] (* Georg Fischer, Apr 14 2020 *)

Formula

Recurrence: a(n) = (binomial(m,n-1) - a(n-1) - (m-n+2)*a(n-2))/n for n > 1, a(0)=1, a(1)=0 with m = 127. - Georg Fischer, Apr 14 2020

A010089 Weight distribution of [255,247,3] Hamming code of length 255.

Original entry on oeis.org

1, 0, 0, 10795, 680085, 33732216, 1405509000, 50008107375, 1550251328625, 42545493649000, 1046619143765400, 23311068641056875, 473991729034823125, 8859999141328482000, 153151413728678046000
Offset: 0

Views

Author

Keywords

Examples

			The weight distribution is:
i A_i
0 1
3 10795
4 680085
5 33732216
6 1405509000
7 50008107375
8 1550251328625
9 42545493649000
10 1046619143765400
11 23311068641056875
12 473991729034823125
13 8859999141328482000
14 153151413728678046000
15 2460632715426486340575
16 36909490731397295108625
17 518904016733068543566000
18 6861064221248350742706000
19 85582748444230438249954875
20 1009876431641919171349467525
21 11300998163609413271358885000
22 120201525922027395704453595000
23 1217693719123171756517942265375
24 11771039284857326979673441898625
25 108764402992081481974549609148760
26 962146641853028494390246542469800
27 8160428925346058285863130526116475
28 66449206963532188899171205712662725
29 520136895886958844315840276436384800
30 3918364615681756627179330082487432160
31 28439743178335330454537357075803359375
32 199078202248347313181761499530623515625
33 1345286033375195479354716751205982444000
34 8783926453214511659316091728462591252000
35 55464221318868773624138439600080614325475
36 338948019170864727703068242000492643100125
37 2006205843200523658544348659796632473399000
38 11509286153097740988491263364096470505289000
39 64038848595441276782240300553311321203146375
40 345809782415382894624097622987881134496990425
41 1813392761446520057174518147705251800233365000
42 9239667879751316481793973419260092505950955000
43 45768587404349544433075523596017341783608099875
44 220521375675502350450272977326265374048293572125
45 1034000228167355465444599248543364839476619903600
46 4720435824242274950942735699871882962828047386000
47 20990874197162456696745418013487652079396243136375
48 90960454854370645685896811391779825677383720257625
49 384261513364382115448584233772831444456789050826000
50 1583157435061254315648167043144065551161970889403120
51 6363672042893277151134790105055681029646419426105875
52 24965174937504394977528791950603056347074414671646125
53 95621330421007399630912161582674665717296733004183400
54 357694606389694346767486234068523749535072964200834200
55 1307211197896882976368449705522582739007554403339591895
56 4668611421060296344173034662580652639312694297641399625
57 16299187241947350394569015704450199753987312022886523000
58 55642052998371989278011467404847233642922203112612613000
59 185787871875920031996072187931724842920726788424921345875
60 606907048128005437853835813910301153541040842188076396525
61 1940112694835427219368819404629513332873061578917732680000
62 6070675206420530331573402653195573977054418488871615160000
63 18597465314907338952280424002554856647893224775448087186375
64 55792395944722016856841272007664569943679674326344261559125
65 163943809622183157225487430048943112084700101828134317803200
66 471959451942648482921857753171199868122621505262810914888000
67 1331348304733739750331807691793588187239183577651261370290375
68 3680786489557986368564409500841096752955389891153487317861625
69 9975464834019470303210790966015009211050504867180446279103000
70 26506235130394592519960101709697024475077055789936614398759400
71 69065542241169008678769279102815868410245485756214467768166875
72 176500830171876355512410379929418330381738463599214750963093125
73 442460985225388672037960267494086021562017113689785027758781000
74 1088214855554334301498767144377346701679555603939741554758083000
75 2626225184737793447617024708431164279552646784742677657874482695
76 6220007016484247639092953256810652241045742384916868137071143225
77 14459496830528315940229073155441789277844406935533100753490885200
78 32997313279923592786676602841905621685337236340062717104120225200
79 73930689247423745863819730417943013769852302388950088606864414475
80 162647516344332240900403406919474630293675065255690194935101711845
81 351398955064915335278649335937131032005717606115638034001409630000
82 745651441235308150469329078695863409377986139806353877027381410000
83 1554189148598895301580649766438377321890968729905215998246901628375
84 3182387304273928474665139997945248801967221685044013710696036667625
85 6402214459186373754914575760572183578934601998868797663066087434600
86 12655540210019576027156719526712455911847469067531344217688777487000
87 24583750522911590213672248276027688342739007074054518738107125700875
88 46932614634649399498828837617871041381592649868649535772749967247125
89 88064569033555614789937257103196141416698876001103505728904435627000
90 162430205106335911723662051990339549724133482402035355011090403489800
91 294516305962037642136310314048418013344760007239148261168257991684375
92 525007328019284492503857516347179936831963491165438204691242506915625
93 920174134055305078259449195318175329255490673127505770742741547948000
94 1585832018265525773170540102569621312121164777092084413407703518804000
95 2687567946744733152425862700144306029010449406818271534555318088444475
96 4479279911241221920709771166907176715017415678030452557592196814074125
97 7342324802962415313328387789054031221789970638285136920449838903572000
98 11837625702735322648019237455821805439212401641316853402357903538412000
99 18772800356863087431707275561252763287697014874708732957915444358795375
100 29285568556706416393463349875554310728807343204545623414348093199720785
101 44943199270193015257295239908028890980050620093523550955534563899131000
102 67855418505977689702190852410161266773801916611790459285807086671237000
103 100794942052568801208108741929657029893858428326807598225053281208983075
104 147315684538369786381082007435652582152562318323795720482770180228513725
105 211853984431369883271841744026509900201202240457526296501897284553757160
106 299793374195334740479021335886570613492267321402159853540420685689279000
107 417469278085092302162375505113074971529136950895225412259501557064947375
108 572087529227719080741033099599399035058446932708271861244502133755668625
109 771530888041052338247081336156987682652392942648671723653551323364294000
110 1024031905945396739855217046172001833338630632970055196849259029192608400
111 1337699336595338083594652898152615016416491840814606819455574983641841875
112 1719899147051148964621696583339076449678346652475923053585739264682368125
113 2176509540073577893282323994845025938350015962301553471417811161043242000
114 2711090830617965446018333397087663888120195321463338534573063025159126000
115 3324033105366375025118130512950961824412522547008929834360735216243180575
116 4011764092683556064797743722527022891532354798114225662159508019603838625
117 4766112896436019598349456217361163931735833436754811885936069440260701000
118 5573928641594666987900211508439327309996144188747152883552352396237091000
119 6417043898306465355817890560136032300025959978839934301148499821048309875
120 7272649751413994069926942634820836606696087976018592207968299797188084525
121 8114113359015613218513531038849693713822634121122083303419184948849215000
122 8912222869738460420334534091851302931575680100248845595558776911031105000
123 9636793834757847446377992148099376363251967689786794815010302061101025375
124 10258522469258353733241088415718690967332739798805297706301289290849478625
125 10750931547782754712436660659673188110086239852927973458082630092037726592
126 11092230961998080258863221315535829002469930006989178964688427872737336960
127 11266911764549231129081539761449779089546394419271138991158225488753045795
128 11266911764549231129081539761449779089546394419271138991158225488753045795
129 11092230961998080258863221315535829002469930006989178964688427872737336960
130 10750931547782754712436660659673188110086239852927973458082630092037726592
131 10258522469258353733241088415718690967332739798805297706301289290849478625
132 9636793834757847446377992148099376363251967689786794815010302061101025375
133 8912222869738460420334534091851302931575680100248845595558776911031105000
134 8114113359015613218513531038849693713822634121122083303419184948849215000
135 7272649751413994069926942634820836606696087976018592207968299797188084525
136 6417043898306465355817890560136032300025959978839934301148499821048309875
137 5573928641594666987900211508439327309996144188747152883552352396237091000
138 4766112896436019598349456217361163931735833436754811885936069440260701000
139 4011764092683556064797743722527022891532354798114225662159508019603838625
140 3324033105366375025118130512950961824412522547008929834360735216243180575
141 2711090830617965446018333397087663888120195321463338534573063025159126000
142 2176509540073577893282323994845025938350015962301553471417811161043242000
143 1719899147051148964621696583339076449678346652475923053585739264682368125
144 1337699336595338083594652898152615016416491840814606819455574983641841875
145 1024031905945396739855217046172001833338630632970055196849259029192608400
146 771530888041052338247081336156987682652392942648671723653551323364294000
147 572087529227719080741033099599399035058446932708271861244502133755668625
148 417469278085092302162375505113074971529136950895225412259501557064947375
149 299793374195334740479021335886570613492267321402159853540420685689279000
150 211853984431369883271841744026509900201202240457526296501897284553757160
151 147315684538369786381082007435652582152562318323795720482770180228513725
152 100794942052568801208108741929657029893858428326807598225053281208983075
153 67855418505977689702190852410161266773801916611790459285807086671237000
154 44943199270193015257295239908028890980050620093523550955534563899131000
155 29285568556706416393463349875554310728807343204545623414348093199720785
156 18772800356863087431707275561252763287697014874708732957915444358795375
157 11837625702735322648019237455821805439212401641316853402357903538412000
158 7342324802962415313328387789054031221789970638285136920449838903572000
159 4479279911241221920709771166907176715017415678030452557592196814074125
160 2687567946744733152425862700144306029010449406818271534555318088444475
161 1585832018265525773170540102569621312121164777092084413407703518804000
162 920174134055305078259449195318175329255490673127505770742741547948000
163 525007328019284492503857516347179936831963491165438204691242506915625
164 294516305962037642136310314048418013344760007239148261168257991684375
165 162430205106335911723662051990339549724133482402035355011090403489800
166 88064569033555614789937257103196141416698876001103505728904435627000
167 46932614634649399498828837617871041381592649868649535772749967247125
168 24583750522911590213672248276027688342739007074054518738107125700875
169 12655540210019576027156719526712455911847469067531344217688777487000
170 6402214459186373754914575760572183578934601998868797663066087434600
171 3182387304273928474665139997945248801967221685044013710696036667625
172 1554189148598895301580649766438377321890968729905215998246901628375
173 745651441235308150469329078695863409377986139806353877027381410000
174 351398955064915335278649335937131032005717606115638034001409630000
175 162647516344332240900403406919474630293675065255690194935101711845
176 73930689247423745863819730417943013769852302388950088606864414475
177 32997313279923592786676602841905621685337236340062717104120225200
178 14459496830528315940229073155441789277844406935533100753490885200
179 6220007016484247639092953256810652241045742384916868137071143225
180 2626225184737793447617024708431164279552646784742677657874482695
181 1088214855554334301498767144377346701679555603939741554758083000
182 442460985225388672037960267494086021562017113689785027758781000
183 176500830171876355512410379929418330381738463599214750963093125
184 69065542241169008678769279102815868410245485756214467768166875
185 26506235130394592519960101709697024475077055789936614398759400
186 9975464834019470303210790966015009211050504867180446279103000
187 3680786489557986368564409500841096752955389891153487317861625
188 1331348304733739750331807691793588187239183577651261370290375
189 471959451942648482921857753171199868122621505262810914888000
190 163943809622183157225487430048943112084700101828134317803200
191 55792395944722016856841272007664569943679674326344261559125
192 18597465314907338952280424002554856647893224775448087186375
193 6070675206420530331573402653195573977054418488871615160000
194 1940112694835427219368819404629513332873061578917732680000
195 606907048128005437853835813910301153541040842188076396525
196 185787871875920031996072187931724842920726788424921345875
197 55642052998371989278011467404847233642922203112612613000
198 16299187241947350394569015704450199753987312022886523000
199 4668611421060296344173034662580652639312694297641399625
200 1307211197896882976368449705522582739007554403339591895
201 357694606389694346767486234068523749535072964200834200
202 95621330421007399630912161582674665717296733004183400
203 24965174937504394977528791950603056347074414671646125
204 6363672042893277151134790105055681029646419426105875
205 1583157435061254315648167043144065551161970889403120
206 384261513364382115448584233772831444456789050826000
207 90960454854370645685896811391779825677383720257625
208 20990874197162456696745418013487652079396243136375
209 4720435824242274950942735699871882962828047386000
210 1034000228167355465444599248543364839476619903600
211 220521375675502350450272977326265374048293572125
212 45768587404349544433075523596017341783608099875
213 9239667879751316481793973419260092505950955000
214 1813392761446520057174518147705251800233365000
215 345809782415382894624097622987881134496990425
216 64038848595441276782240300553311321203146375
217 11509286153097740988491263364096470505289000
218 2006205843200523658544348659796632473399000
219 338948019170864727703068242000492643100125
220 55464221318868773624138439600080614325475
221 8783926453214511659316091728462591252000
222 1345286033375195479354716751205982444000
223 199078202248347313181761499530623515625
224 28439743178335330454537357075803359375
225 3918364615681756627179330082487432160
226 520136895886958844315840276436384800
227 66449206963532188899171205712662725
228 8160428925346058285863130526116475
229 962146641853028494390246542469800
230 108764402992081481974549609148760
231 11771039284857326979673441898625
232 1217693719123171756517942265375
233 120201525922027395704453595000
234 11300998163609413271358885000
235 1009876431641919171349467525
236 85582748444230438249954875
237 6861064221248350742706000
238 518904016733068543566000
239 36909490731397295108625
240 2460632715426486340575
241 153151413728678046000
242 8859999141328482000
243 473991729034823125
244 23311068641056875
245 1046619143765400
246 42545493649000
247 1550251328625
248 50008107375
249 1405509000
250 33732216
251 680085
252 10795
255 1
		

References

  • F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 129.

Crossrefs

Row 8 of A340030.

Programs

  • Mathematica
    m:=255; RecurrenceTable[{a[n]==(Binomial[m, n-1]-a[n-1]-(m-n+2)*a[n-2])/n,
    a[0]==1, a[1]==0}, a, {n, 0, m}] (* Georg Fischer, Jul 14 2020 *)

Formula

Recurrence (from the reference, p. 129): a(n) = (binomial(m,n-1) - a(n-1) - (m-n+2)*a(n-2))/n for n > 1, a(0)=1, a(1)=0 with m = 255. - Georg Fischer, Jul 14 2020

A010086 Weight distribution of d=3 Hamming code of length 31.

Original entry on oeis.org

1, 0, 0, 155, 1085, 5208, 22568, 82615, 247845, 628680, 1383096, 2648919, 4414865, 6440560, 8280720, 9398115, 9398115, 8280720, 6440560, 4414865, 2648919, 1383096, 628680, 247845, 82615, 22568, 5208, 1085, 155, 0, 0, 1
Offset: 0

Views

Author

Keywords

Examples

			Weight distribution:
i A_i
0 1
3 155
4 1085
5 5208
6 22568
7 82615
8 247845
9 628680
10 1383096
11 2648919
12 4414865
13 6440560
14 8280720
15 9398115
16 9398115
17 8280720
18 6440560
19 4414865
20 2648919
21 1383096
22 628680
23 247845
24 82615
25 22568
26 5208
27 1085
28 155
31 1
		

References

  • F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 129.

Crossrefs

Row 5 of A340030.

Programs

  • Mathematica
    m:=31; RecurrenceTable[{a[n]==(Binomial[m,n-1]-a[n-1]-(m-n+2)*a[n-2])/n,
    a[0]==1,a[1]==0}, a, {n,0,127}] (* Georg Fischer, Apr 14 2020 *)
  • PARI
    Vecrev((1+x)^31 + 31*(1-x)*(1-x^2)^15)/32 \\ Andrew Howroyd, Jan 11 2021

Formula

Recurrence: a(n) = (binomial(m,n-1) - a(n-1) - (m-n+2)*a(n-2))/n for n > 1, a(0)=1, a(1)=0 with m = 31. - Georg Fischer, Apr 14 2020

A002394 Weight distribution of [ 7,4,3 ] Hamming code.

Original entry on oeis.org

1, 0, 0, 7, 7, 0, 0, 1
Offset: 0

Views

Author

Keywords

References

  • F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 126.

Crossrefs

Row 3 of A340030.

A010085 Weight distribution of [15,11,3] Hamming code of length 15 and minimal distance 3.

Original entry on oeis.org

1, 0, 0, 35, 105, 168, 280, 435, 435, 280, 168, 105, 35, 0, 0, 1
Offset: 0

Views

Author

Keywords

References

  • F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 129.

Crossrefs

Row 4 of A340030.

Programs

  • PARI
    Vecrev((1+x)^15 + 15*(1-x)*(1-x^2)^7)/16 \\ Andrew Howroyd, Jan 11 2021
Showing 1-8 of 8 results.