cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A340259 a(n) = A340312(n, 2^(n-1)). a(n) is the central term of row n of A340312.

Original entry on oeis.org

1, 0, 14, 870, 18796230, 28634752793916486, 187118328452563149209991044344449606, 22533823529098462258163079522899558179092788838542277982316450977506091590
Offset: 1

Views

Author

Peter Luschny, Jan 06 2021

Keywords

Comments

a(9) = 2299131884087642202247291403507120751687796592498104258 * C, where C is a composite factor with 96 digits.
C = P47*P49, with P47 = 88967307877356450624418823383132738084943851019 and
P49 = 4512180962860489443011495305279720577473472225641. - Hugo Pfoertner, Jan 09 2021

Crossrefs

Programs

  • Maple
    seq(A340312_row(n)[2^(n-1)+1], n = 1..8);
  • PARI
    a(n) = {if(n<=2, n==1, (2*binomial(2^n-1, 2^(n-1)) + (2^n-1)*binomial(2^(n-1), 2^(n-2)))/2^n)} \\ Andrew Howroyd, Jan 09 2021

Formula

a(n) = (2*binomial(2^n-1, 2^(n-1)) + (2^n-1)*binomial(2^(n-1), 2^(n-2)))/2^n for n >= 3. - Andrew Howroyd, Jan 09 2021

A340030 Triangle read by rows: T(n,k) is the number of hypergraphs on n labeled vertices with k edges and all vertices having even degree, 0 <= k < 2^n.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 7, 7, 0, 0, 1, 1, 0, 0, 35, 105, 168, 280, 435, 435, 280, 168, 105, 35, 0, 0, 1, 1, 0, 0, 155, 1085, 5208, 22568, 82615, 247845, 628680, 1383096, 2648919, 4414865, 6440560, 8280720, 9398115, 9398115, 8280720, 6440560, 4414865, 2648919, 1383096, 628680, 247845, 82615, 22568, 5208, 1085, 155, 0, 0, 1
Offset: 0

Views

Author

Andrew Howroyd, Jan 09 2021

Keywords

Comments

Hypergraphs are graphs in which an edge is connected to a nonempty subset of vertices rather than exactly two of them. An edge is a nonempty subset of vertices.
Equivalently, T(n,k) is the number of subsets of {1..2^n-1} with k elements such that the bitwise-xor of the elements is zero.
Also the coefficients of polynomials p_{n}(x) which have the representation
p_{n}(x) = (x + 1)^(2*(n - 1) - 1)*q_{n - 1}(x), where q_{n}(x) are the polynomials defined in A340263, and n >= 2. - Peter Luschny, Jan 10 2021

Examples

			Triangle begins:
[0]  1;
[1]  1, 0;
[2]  1, 0, 0,  1;
[3]  1, 0, 0,  7,   7,   0,   0,   1;
[4]  1, 0, 0, 35, 105, 168, 280, 435, 435, 280, 168, 105, 35, 0, 0, 1;
		

Crossrefs

Row sums are A016031(n+1).
Column k=3 gives A006095.

Programs

  • PARI
    T(n,k) = {(binomial(2^n-1, k) + (-1)^((k+1)\2)*(2^n-1)*binomial(2^(n-1)-1, k\2))/2^n}
    { for(n=0, 5, print(vector(2^n, k, T(n,k-1)))) }

Formula

T(n,k) = (binomial(2^n-1, k) + (-1)^ceiling(k/2)*(2^n-1)*binomial(2^(n-1)-1, floor(k/2)))/2^n.
T(n,2*k) + T(n,2*k+1) = binomial(2^n-1, k)/2^n = A281123(n,k).
T(n, k) = T(n, 2^n-1-k) for n >= 2.

A340263 T(n, k) = [x^k] ((1-x)^(2^n) + 2^(-n)*((2^n-1)*(x-1)^(2^n) + (x+1)^(2^n)))/2. Irregular triangle read by rows, for n >= 0 and 0 <= k <= 2^n.

Original entry on oeis.org

1, 1, -1, 1, 1, -3, 6, -3, 1, 1, -7, 28, -49, 70, -49, 28, -7, 1, 1, -15, 120, -525, 1820, -4095, 8008, -10725, 12870, -10725, 8008, -4095, 1820, -525, 120, -15, 1
Offset: 0

Views

Author

Peter Luschny, Jan 06 2021

Keywords

Comments

Conjecture: for n >= 1 the polynomials are irreducible.

Examples

			Polynomials begin:
[0] 1;
[1] x^2 - x + 1;
[2] x^4 - 3*x^3 + 6*x^2 - 3*x + 1;
[3] x^8 - 7*x^7 + 28*x^6 - 49*x^5 + 70*x^4 - 49*x^3 + 28*x^2 - 7*x + 1;
Triangle begins:
[0] [1]
[1] [1, -1, 1]
[2] [1, -3, 6, -3, 1]
[3] [1, -7, 28, -49, 70, -49, 28, -7, 1]
[4] [1, -15, 120, -525, 1820, -4095, 8008, -10725, 12870, -10725, 8008, -4095, 1820, -525, 120, -15, 1]
		

Crossrefs

Row sums are 2^(2^n - n - 1) = A016031(n-1).
Central terms of the rows are A037293(n) for n >= 2.
Cf. A340312.

Programs

  • Maple
    A340263_row := proc(n) local a, b;
    if n = 0 then return [1] fi;
    b := n -> add(binomial(2^n, 2*k)*x^(2*k), k = 0..2^n);
    a := n -> x*mul(b(k), k = 0..n);
    expand(b(n) - (2^n-1)*a(n-1));
    [seq(coeff(%, x, j), j = 0..2^n)] end:
    for n from 0 to 5 do A340263_row(n) od;
    # Alternatively:
    CoeffList := p -> [op(PolynomialTools:-CoefficientList(p, x))]:
    Tpoly := n -> ((1-x)^(2^n) + 2^(-n)*((2^n-1)*(x-1)^(2^n) + (x + 1)^(2^n)))/2:
    seq(print(CoeffList(Tpoly(n))), n=0..5); # Peter Luschny, Feb 03 2021
  • SageMath
    def A340263():
        a, b, c = 1, 1, 1
        yield [1]
        while True:
            c *= 2
            a *= b
            b = sum(binomial(c, 2 * k) * x ^ (2 * k) for k in range(c + 1))
            yield ((b - (c - 1) * x * a)).list()
    A340263_row = A340263()
    for _ in range(6):
        print(next(A340263_row))

Formula

Let p_n(x) = b(n) - (2^n-1)*a(n-1), b(n) = Sum_{k=0..2^n} binomial(2^n, 2*k)* x^(2*k), and a(n) = x*Product_{k=0..n} b(k). Then T(n, k) = [x^k] p_n(x).

Extensions

Shorter name by Peter Luschny, Feb 03 2021

A362905 Array read by antidiagonals: T(n,k) is the number of n element multisets of length k vectors over GF(2) that sum to zero.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 4, 2, 1, 1, 1, 8, 5, 3, 1, 1, 1, 16, 15, 11, 3, 1, 1, 1, 32, 51, 50, 14, 4, 1, 1, 1, 64, 187, 276, 99, 24, 4, 1, 1, 1, 128, 715, 1768, 969, 232, 30, 5, 1, 1, 1, 256, 2795, 12496, 11781, 3504, 429, 45, 5, 1, 1, 1, 512, 11051, 93600, 162877, 73440, 10659, 835, 55, 6, 1
Offset: 0

Views

Author

Andrew Howroyd, May 27 2023

Keywords

Comments

Equivalently, T(n,k) is the number multisets with n elements drawn from {0..2^k-1} such that the bitwise-xor of all the elements gives zero.
T(n,k) is the number of equivalence classes of n X k binary matrices with an even number of 1's in each column under permutation of rows.
T(n,k) is the number of equivalence classes of n X k binary matrices under permutation of rows and complementation of columns.

Examples

			Array begins:
=========================================
n/k| 0 1  2   3     4      5        6 ...
---+-------------------------------------
0  | 1 1  1   1     1      1        1 ...
1  | 1 1  1   1     1      1        1 ...
2  | 1 2  4   8    16     32       64 ...
3  | 1 2  5  15    51    187      715 ...
4  | 1 3 11  50   276   1768    12496 ...
5  | 1 3 14  99   969  11781   162877 ...
6  | 1 4 24 232  3504  73440  1878976 ...
7  | 1 4 30 429 10659 394383 18730855 ...
  ...
		

Crossrefs

Columns k=0..4 are A000012, A004526(n+2), A053307, A362906, A363350.
Rows n=2..3 are A000079, A007581.
Main diagonal is A363351.

Programs

  • Mathematica
    A362905[n_,k_]:=(Binomial[2^k+n-1,n]+If[EvenQ[n],(2^k-1)Binomial[2^(k-1)+n/2-1,n/2],0])/2^k;Table[A362905[n-k,k],{n,0,15},{k,n,0,-1}] (* Paolo Xausa, Nov 19 2023 *)
  • PARI
    T(n,k)={(binomial(2^k+n-1, n) + if(n%2==0, (2^k-1)*binomial(2^(k-1)+n/2-1,n/2)))/2^k}

Formula

T(n,k) = binomial(2^k+n-1, n)/2^k for odd n;
T(n,k) = (binomial(2^k+n-1, n) + (2^k-1)*binomial(2^(k-1)+n/2-1, n/2))/2^k for even n.
G.f. of column k: (1/(1-x)^(2^k) + (2^k-1)/(1-x^2)^(2^(k-1)))/2^k.

A054669 Triangular array T(n,k) giving the number of labeled even graphs with n nodes and k edges for n >= 0 and 0 <= k <= n*(n-1-[0 == n mod 2])/2 (with no trailing zeros).

Original entry on oeis.org

1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 4, 3, 1, 0, 0, 10, 15, 12, 15, 10, 0, 0, 1, 1, 0, 0, 20, 45, 72, 160, 240, 195, 120, 96, 60, 15, 1, 0, 0, 35, 105, 252, 805, 1935, 3255, 4515, 5481, 5481, 4515, 3255, 1935, 805, 252, 105, 35, 0, 0, 1, 1, 0, 0, 56, 210, 672, 2800, 9320, 24087
Offset: 0

Views

Author

Vladeta Jovovic, Apr 18 2000

Keywords

Comments

From Petros Hadjicostas, Feb 18 2021: (Start)
This is the same as irregular array A058878 but without the (n/2)*[0 == n mod 2] trailing zeros at the end of each row n.
For n odd, we have T(n,n*(n-1)/2) = 1 at end of row n because a complete graph with n nodes and n*(n-1)/2 edges is even and has only one labeling.
For n even, the maximum number of edges an even graph with n nodes can have is n*(n-2)/2 = n*(n-1)/2 - n/2. We have T(n,n*(n-2)/2) = A001147(n/2) because each labeling of an even graph that has n nodes and n*(n-2)/2 edges corresponds to a perfect matching of the complete graph with n vertices (by considering the pairs of vertices that are not connected).
For a discussion about the confusion in defining Euler graphs, see the comments for A058878. (End)

Examples

			Triangle T(n,k) (with rows n >= 0 and columns k = 0..n*(n-1-[0==n mod 2])/2) begins:
  1;
  1;
  1;
  1, 0, 0,  1;
  1, 0, 0,  4,  3;
  1, 0, 0, 10, 15, 12,  15,  10,   0,   0,  1;
  1, 0, 0, 20, 45, 72, 160, 240, 195, 120, 96, 60, 15;
  ...
		

References

  • F. Harary and E. Palmer, Graphical Enumeration, Academic Press, New York, 1973; pp. 13-15.

Crossrefs

Row sums are A006125(n-1).
Essentially the same table as A058878.

Programs

  • Maple
    CoeffList := p -> op(PolynomialTools:-CoefficientList(p, x)):
    w := p -> factor(2^(-p)*(1 + x)^(p*(p - 1)/2)*
              add(binomial(p, n)*((1 - x)/(1 + x))^(n*(p - n)), n=0..p)):
    seq(print(CoeffList(w(n))), n = 0..6); # Peter Luschny, Feb 18 2021
  • Mathematica
    T[n_] := (1/2^n)(1+x)^Binomial[n, 2] Sum[Binomial[n, k] ((1-x)/(1+x))^(k(n-k)), {k, 0, n}] // CoefficientList[#, x]&;
    T /@ Range[0, 8] // Flatten (* Jean-François Alcover, Feb 20 2021, after Andrew Howroyd *)
  • PARI
    Row(n)=Vecrev(2^(-n)*(1+x)^binomial(n, 2)*sum(k=0, n, binomial(n, k)*((1-x)/(1+x))^(k*(n-k)))) \\ Andrew Howroyd, Jan 05 2021

Formula

T(n,k) = [y^k] 2^(-n)*(1+y)^C(n, 2)*Sum_{s=0..n} C(n, s)*((1-y)/(1+y))^(s*(n-s)).
From Petros Hadjicostas, Feb 18 2021: (Start)
T(n,k) = (1/2^n) * Sum_{s=0..n} binomial(n,s) * Sum_{t=0..k} (-1)^t * binomial(s*(n-s), t) * binomial(binomial(s,2) + binomial(n-s, 2), k-t).
T(n, n*(n-1)/2) = 1 if n is odd.
T(n, n*(n-2)/2) = A001147(n/2) if n is even.
T(n,k) = A058878(n,k) for n >= 0 and 0 <= k <= n*(n-1-[0 == n mod 2])/2. (End)

Extensions

T(0,0) = 1 prepended by Andrew Howroyd, Jan 09 2021
Name edited by Petros Hadjicostas, Feb 18 2021
Showing 1-5 of 5 results.