cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340264 T(n, k) = Sum_{j=0..k} binomial(n, k - j)*Stirling2(n - k + j, j). Triangle read by rows, 0 <= k <= n.

Original entry on oeis.org

1, 0, 2, 0, 1, 4, 0, 1, 6, 8, 0, 1, 11, 24, 16, 0, 1, 20, 70, 80, 32, 0, 1, 37, 195, 340, 240, 64, 0, 1, 70, 539, 1330, 1400, 672, 128, 0, 1, 135, 1498, 5033, 7280, 5152, 1792, 256, 0, 1, 264, 4204, 18816, 35826, 34272, 17472, 4608, 512
Offset: 0

Views

Author

Peter Luschny, Jan 08 2021

Keywords

Comments

A006905(n) = Sum_{k=0..n} A001035(k) * T(n, k). - Michael Somos, Jul 18 2021
T(n, k) is the number of idempotent relations R on [n] containing exactly k strongly connected components such that the following conditional statement holds for all x, y in [n]: If x, y are in distinct strongly connected components of R then (x, y) is not in R. - Geoffrey Critzer, Jan 10 2024

Examples

			[0] 1;
[1] 0, 2;
[2] 0, 1,   4;
[3] 0, 1,   6,    8;
[4] 0, 1,  11,   24,    16;
[5] 0, 1,  20,   70,    80,    32;
[6] 0, 1,  37,  195,   340,   240,    64;
[7] 0, 1,  70,  539,  1330,  1400,   672,   128;
[8] 0, 1, 135, 1498,  5033,  7280,  5152,  1792,  256;
[9] 0, 1, 264, 4204, 18816, 35826, 34272, 17472, 4608, 512;
		

Crossrefs

Sum of row(n) is A000110(n+1).
Sum of row(n) - 2^n is A058681(n).
Alternating sum of row(n) is A109747(n).

Programs

  • Maple
    egf := exp(t*(exp(-x) - x - 1));
    ser := series(egf, x, 22):
    p := n -> coeff(ser, x, n);
    seq(seq((-1)^n*n!*coeff(p(n), t, k), k=0..n), n = 0..10);
    # Alternative:
    T := (n, k) -> add(binomial(n, k - j)*Stirling2(n - k + j, j), j=0..k):
    seq(seq(T(n, k), k = 0..n), n=0..9); # Peter Luschny, Feb 09 2021
  • Mathematica
    T[ n_, k_] := Sum[ Binomial[n, k-j] StirlingS2[n-k+j, j], {j, 0 ,k}]; (* Michael Somos, Jul 18 2021 *)
  • PARI
    T(n, k) = sum(j=0, k, binomial(n, j)*stirling(n-j, k-j, 2)); /* Michael Somos, Jul 18 2021 */

Formula

T(n, k) = (-1)^n * n! * [t^k] [x^n] exp(t*(exp(-x) - x - 1)).
n-th row polynomial R(n,x) = exp(-x)*Sum_{k >= 0} (x + k)^n * x^k/k! = Sum_{k = 0..n} binomial(n,k)*Bell(k,x)*x^(n-k), where Bell(n,x) denotes the n-th Bell polynomial. - Peter Bala, Jan 13 2022

Extensions

New name from Peter Luschny, Feb 09 2021