A006905
Number of transitive relations on n labeled nodes.
Original entry on oeis.org
1, 2, 13, 171, 3994, 154303, 9415189, 878222530, 122207703623, 24890747921947, 7307450299510288, 3053521546333103057, 1797003559223770324237, 1476062693867019126073312, 1679239558149570229156802997, 2628225174143857306623695576671, 5626175867513779058707006016592954, 16388270713364863943791979866838296851, 64662720846908542794678859718227127212465
Offset: 0
- D. Ford and J. McKay, personal communication, 1991.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- S. R. Finch, Transitive relations, topologies and partial orders.
- S. R. Finch, Transitive relations, topologies and partial orders, June 5, 2003. [Cached copy, with permission of the author]
- Eldar Fischer, Johann A. Makowsky, and Vsevolod Rakita, MC-finiteness of restricted set partition functions, arXiv:2302.08265 [math.CO], 2023.
- J. Klaska, Transitivity and Partial Order, Mathematica Bohemica, 122 (1), 75-82 (1997). Based on a correspondence between transitive relations and partial orders, the author obtains a formula and calculates the first 14 terms. - Jeff McSweeney (jmcsween(AT)mtsu.edu), May 13 2000
- Firdous Ahmad Mala, Three Open Problems in Enumerative Combinatorics, J. Appl. Math. Computation (2023) Vol. 7, No. 1, 24-27.
- Firdous Ahmad Mala, Why the number of transitive relations is not an integer polynomial, BOHR Int'l J. Eng. (2023) Vol. 2, No. 1, pp. 30-31.
- G. Pfeiffer, Counting Transitive Relations, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.2.
-
P = Cases[Import["https://oeis.org/A001035/b001035.txt", "Table"], {, }][[All, 2]];
a[n_] := Sum[P[[k+1]] Sum[Binomial[n, s] StirlingS2[n-s, k-s], {s, 0, k}], {k, 0, n}];
a /@ Range[0, 18] (* Jean-François Alcover, Dec 29 2019, after Charles R Greathouse IV *)
transitive[r_]:=Catch[Do[If[a[[2]]==b[[1]]&&FreeQ[r,{a[[1]],b[[2]]}],Throw[False]],{a,r},{b,r}];True];
a[n_]:=Count[Subsets[Tuples[Range[n],2]],?transitive]; (* _Juan José Alba González, Jul 04 2022 *)
-
\\ P = [1, 1, 3, 19, ...] is A001035, starting from 0.
a(n)=sum(k=0,n,P[k+1]*sum(s=0,k,binomial(n,s)*stirling(n-s,k-s,2)))
\\ Charles R Greathouse IV, Sep 05 2011
More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 28 2003
A058681
Number of matroids of rank 2 on n labeled points.
Original entry on oeis.org
0, 0, 1, 7, 36, 171, 813, 4012, 20891, 115463, 677546, 4211549, 27640341, 190891130, 1382942161, 10480109379, 82864804268, 682076675087, 5832741942913, 51724157711084, 474869815108175, 4506715736350171, 44152005850890042, 445958869286416681, 4638590332213222137
Offset: 0
a(3) = 7 because there are 7 collections (having more than one element)of nonempty subsets of {1,2,3} that are pairwise disjoint: {1}{2}; {1}{3}; {1}{2,3}; {2}{3}; {2}{1,3}; {1,2}{3}; {1}{2}{3}. - _Geoffrey Critzer_, Oct 10 2009
- T. D. Noe, Table of n, a(n) for n = 0..100
- W. M. B. Dukes, Tables of matroids.
- W. M. B. Dukes, Counting and Probability in Matroid Theory, Ph.D. Thesis, Trinity College, Dublin, 2000.
- W. M. B. Dukes, On the number of matroids on a finite set, arXiv:math/0411557 [math.CO], 2004.
- I. J. Good, The number of hypotheses of independence for a random vector or for a multidimensional contingency table, and the Bell numbers, Iranian J. Science and Technology, 4, (1975), 77-83. [See Eq. (9), p. 80.]
- Markus Kirchweger, Manfred Scheucher, and Stefan Szeider, A SAT Attack on Rota's Basis Conjecture, Leibniz International Proceedings in Informatics (LIPIcs 2022) Vol. 236, 4:1-4:18.
- A. O. Munagi, k-Complementing Subsets of Nonnegative Integers, International Journal of Mathematics and Mathematical Sciences, 2005:2 (2005), 215-224.
- Index entries for sequences related to matroids
The triangle
A340264 without the main diagonal provides a refinement of this sequence.
-
egf := exp(x + exp(x) - 1) - exp(2*x); ser := series(egf, x, 24):
seq(simplify(n!*coeff(ser,x,n)), n=0..22); # Peter Luschny, Jan 08 2021
-
f[n_] := Sum[ StirlingS2[n + 1, k+2], {k, 1, n}]; Table[ f[n], {n, 0, 23}] (* Zerinvary Lajos, Mar 21 2007 *)
Table[BellB[n+1]-2^n,{n,0,30}] (* Harvey P. Dale, Oct 13 2011 *)
-
a(n) = sum(k=1, n, stirling(n+1, k+2, 2)); \\ Ruud H.G. van Tol, May 09 2024
-
my(x='x+O('x^33)); concat([0,0],Vec(serlaplace(exp(x + exp(x) - 1) - exp(2*x)))) \\ Joerg Arndt, May 10 2024
A358623
Regular triangle read by rows. T(n, k) = {{n, k}}, where {{n, k}} are the second order Stirling set numbers (or second order Stirling numbers). T(n, k) for 0 <= k <= n.
Original entry on oeis.org
1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 3, 0, 0, 0, 1, 10, 0, 0, 0, 0, 1, 25, 15, 0, 0, 0, 0, 1, 56, 105, 0, 0, 0, 0, 0, 1, 119, 490, 105, 0, 0, 0, 0, 0, 1, 246, 1918, 1260, 0, 0, 0, 0, 0, 0, 1, 501, 6825, 9450, 945, 0, 0, 0, 0, 0, 0, 1, 1012, 22935, 56980, 17325, 0, 0, 0, 0, 0, 0
Offset: 0
Triangle T(n, k) starts:
[0] 1;
[1] 0, 0;
[2] 0, 1, 0;
[3] 0, 1, 0, 0;
[4] 0, 1, 3, 0, 0;
[5] 0, 1, 10, 0, 0, 0;
[6] 0, 1, 25, 15, 0, 0, 0;
[7] 0, 1, 56, 105, 0, 0, 0, 0;
[8] 0, 1, 119, 490, 105, 0, 0, 0, 0;
[9] 0, 1, 246, 1918, 1260, 0, 0, 0, 0, 0;
- Ronald L. Graham, Donald E. Knuth, and Oren Patashnik, Concrete Mathematics, Addison-Wesley, Reading, 2nd ed. 1994, thirty-fourth printing 2022.
A008299 is an irregular subtriangle with more information.
A358622 (second order Stirling cycle numbers).
-
T := (n, k) -> add(binomial(n, k - j)*Stirling2(n - k + j, j)*(-1)^(k - j),
j = 0..k): for n from 0 to 9 do seq(T(n, k), k = 0..n) od;
# Using the e.g.f.:
egf := exp(z*(exp(t) - t - 1)): ser := series(egf, t, 12):
seq(print(seq(n!*coeff(coeff(ser, t, n), z, k), k = 0..n)), n = 0..9);
# Using second order Eulerian numbers:
A358623 := proc(n, k) if n = 0 then return 1 fi;
add(binomial(j, n - 2*k)*combinat:-eulerian2(n - k, n - k - j - 1), j = 0..n-k-1)
end: seq(seq(A358623(n, k), k = 0..n), n = 0..11);
-
# recursion over rows
from functools import cache
@cache
def StirlingSetOrd2(n: int) -> list[int]:
if n == 0: return [1]
if n == 1: return [0, 0]
rov: list[int] = StirlingSetOrd2(n - 2)
row: list[int] = StirlingSetOrd2(n - 1) + [0]
for k in range(1, n // 2 + 1):
row[k] = (n - 1) * rov[k - 1] + k * row[k]
return row
for n in range(9): print(StirlingSetOrd2(n))
# Alternative, using function BellMatrix from A264428.
def f(k: int) -> int:
return 1 if k > 0 else 0
print(BellMatrix(f, 9))
A341101
T(n, k) = Sum_{j=0..k} binomial(n, k - j)*Stirling1(n - k + j, j)*(-1)^(n-k). Triangle read by rows, T(n, k) for 0 <= k <= n.
Original entry on oeis.org
1, 0, 2, 0, 1, 4, 0, 2, 6, 8, 0, 6, 19, 24, 16, 0, 24, 80, 110, 80, 32, 0, 120, 418, 615, 500, 240, 64, 0, 720, 2604, 4046, 3570, 1960, 672, 128, 0, 5040, 18828, 30604, 28777, 17360, 6944, 1792, 256, 0, 40320, 154944, 261656, 259056, 167874, 74592, 22848, 4608, 512
Offset: 0
Triangle starts:
n\k 0 1 2 3 4 5 6 7 8 ...
0: 1
1: 0 2
2: 0 1 4
3: 0 2 6 8
4: 0 6 19 24 16
5: 0 24 80 110 80 32
6: 0 120 418 615 500 240 64
7: 0 720 2604 4046 3570 1960 672 128
8: 0 5040 18828 30604 28777 17360 6944 1792 256
- Özmen, N., Erkuş-Duman, E. (2019). On the Generalized Sylvester Polynomials. In: Lindahl, K., Lindström, T., Rodino, L., Toft, J., Wahlberg, P. (eds) Analysis, Probability, Applications, and Computation. Trends in Mathematics. Birkhäuser, Cham. See page 48.
Alternating row sums: (-1)^n*(n+1) =
A181983(n+1).
-
T := (n, k) -> add(binomial(n, k - j)*Stirling1(n - k + j, j)*(-1)^(n-k), j=0..k):
seq(print(seq(T(n,k), k = 0..n)), n = 0..9);
# Alternative:
SP := (n, x) -> (x^n)*hypergeom([-n, x], [], -1/x):
row := n -> seq(coeff(simplify(SP(n, x)), x, k), k = 0..n):
for n from 0 to 8 do row(n) od; # Peter Luschny, Nov 23 2022
-
T[ n_, k_] := If[ n<0, 0, n! * Coefficient[ SeriesCoefficient[ E^(x * z) / (1 - z)^x, {z, 0, n}], x, k]]; (* Michael Somos, Nov 23 2022 *)
-
T(n, k) = sum(j=0, k, binomial(n, k-j)*stirling(n-k+j, j, 1)*(-1)^(n-k)); \\ Michel Marcus, Feb 11 2021
-
{T(n, k) = if( n<0, 0, n! * polcoeff( polcoeff( exp(x*y) / (1 - x + x * O(x^n))^y, n), k))}; /* Michael Somos, Nov 23 2022 */
-
from math import factorial
from sympy import Symbol, Poly
x = Symbol("x")
def Coeffs(p) -> list[int]:
return list(reversed(Poly(p, x).all_coeffs()))
def L(n, m, x):
if n == 0:
return 1
if n == 1:
return 1 - m - 2*x
return ((2 * (n - x) - m - 1) * L(n - 1, m, x) / n
- (n - x - m - 1) * L(n - 2, m, x) / n)
def Sylvester(n):
return (-1)**n * factorial(n) * L(n, n, x)
for n in range(7):
print(Coeffs(Sylvester(n))) # Peter Luschny, Dec 13 2022
Showing 1-4 of 4 results.
Comments