Original entry on oeis.org
1, 3, 16, 187, 4181, 158484, 9573673, 887796203, 123095499826, 25013843421773, 7332464142932061, 3060854010476035118, 1800064413234246359355, 1477862758280253372432667, 1680717420907850482529235664
Offset: 0
Original entry on oeis.org
1, 11, 158, 3823, 150309, 9260886, 868807341, 121329481093, 24768540218324, 7282559551588341, 3046214096033592769, 1793950037677437221180, 1474265690307795355749075, 1677763495455703210030729685, 2626545934585707736394538773674, 5623547642339635201400382321016283
Offset: 1
a(3) = A006905(3) - A006905(2) = 171 - 13 = 158.
A000666
Number of symmetric relations on n nodes.
Original entry on oeis.org
1, 2, 6, 20, 90, 544, 5096, 79264, 2208612, 113743760, 10926227136, 1956363435360, 652335084592096, 405402273420996800, 470568642161119963904, 1023063423471189431054720, 4178849203082023236058229792, 32168008290073542372004082199424
Offset: 0
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, pp. 101, 241.
- M. D. McIlroy, Calculation of numbers of structures of relations on finite sets, Massachusetts Institute of Technology, Research Laboratory of Electronics, Quarterly Progress Reports, No. 17, Sept. 15, 1955, pp. 14-22.
- R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- David Applegate, Table of n, a(n) for n = 0..80 [Shortened file because terms grow rapidly: see Applegate link below for additional terms]
- David Applegate, Table of n, a(n) for n = 0..100
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- R. L. Davis, The number of structures of finite relations, Proc. Amer. Math. Soc. 4 (1953), 486-495.
- R. L. Davis, Structure of dominance relations, Bull. Math. Biophys., 16 (1954), 131-140. [Annotated scanned copy]
- F. Harary, The number of linear, directed, rooted, and connected graphs, Trans. Am. Math. Soc. 78 (1955) 445-463, eq. (24).
- Frank Harary, Edgar M. Palmer, Robert W. Robinson and Allen J. Schwenk, Enumeration of graphs with signed points and lines, J. Graph Theory 1 (1977), no. 4, 295-308.
- Adib Hassan, Po-Chien Chung and Wayne B. Hayes, Graphettes: Constant-time determination of graphlet and orbit identity including (possibly disconnected) graphlets up to size 8, arXiv:1708.04341 [cs.DS], 2017.
- Mathematics Stack Exchange, Enumerating Graphs with Self-Loops, Jan 23 2014.
- M. D. McIlroy, Calculation of numbers of structures of relations on finite sets, Massachusetts Institute of Technology, Research Laboratory of Electronics, Quarterly Progress Reports, No. 17, Sep. 15, 1955, pp. 14-22. [Annotated scanned copy]
- W. Oberschelp, Kombinatorische Anzahlbestimmungen in Relationen, Math. Ann., 174 (1967), 53-78.
- W. Oberschelp, The number of non-isomorphic m-graphs, Presented at Mathematical Institute Oberwolfach, July 3 1967 [Scanned copy of manuscript]
- W. Oberschelp, Strukturzahlen in endlichen Relationssystemen, in Contributions to Mathematical Logic (Proceedings 1966 Hanover Colloquium), pp. 199-213, North-Holland Publ., Amsterdam, 1968. [Annotated scanned copy]
- G. Pfeiffer, Counting Transitive Relations, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.2.
- Marko Riedel, Maple code for sequence.
- Marko Riedel et al., Enumerating Graphs with Self-Loops
- R. W. Robinson, Notes - "A Present for Neil Sloane"
- R. W. Robinson, Notes - computer printout
- Sage, Common Graphs (Graph Generators)
- Lorenzo Sauras-Altuzarra, Graphs
- J. M. Tangen and N. J. A. Sloane, Correspondence, 1976-1976
- Eric Weisstein's World of Mathematics, Rooted Graph
-
# see Riedel link above
-
Join[{1,2}, Table[CycleIndex[Join[PairGroup[SymmetricGroup[n]], Permutations[Range[n*(n-1)/2+1, n*(n+1)/2]], 2],s] /. Table[s[i]->2, {i,1,n^2-n}], {n,2,8}]] (* Geoffrey Critzer, Nov 04 2011 *)
Table[Module[{eds,pms,leq},
eds=Select[Tuples[Range[n],2],OrderedQ];
pms=Map[Sort,eds/.Table[i->Part[#,i],{i,n}]]&/@Permutations[Range[n]];
leq=Function[seq,PermutationCycles[Ordering[seq],Length]]/@pms;
Total[Thread[Power[2,leq]]]/n!
],{n,0,8}] (* This is after Geoffrey Critzer's program but does not use the (deprecated) Combinatorica package. - Gus Wiseman, Jul 21 2016 *)
permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
edges[v_] := Sum[Sum[GCD[v[[i]], v[[j]]], {j, 1, i-1}], {i, 2, Length[v]}] + Sum[Quotient[v[[i]], 2] + 1, {i, 1, Length[v]}];
a[n_] := a[n] = (s = 0; Do[s += permcount[p]*2^edges[p], {p, IntegerPartitions[n]}]; s/n!);
Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 0, 17}] (* Jean-François Alcover, Nov 13 2017, after Andrew Howroyd *)
-
permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i],v[j]))) + sum(i=1, #v, v[i]\2 + 1)}
a(n) = {my(s=0); forpart(p=n, s+=permcount(p)*2^edges(p)); s/n!} \\ Andrew Howroyd, Oct 22 2017
-
from itertools import combinations
from math import prod, factorial, gcd
from fractions import Fraction
from sympy.utilities.iterables import partitions
def A000666(n): return int(sum(Fraction(1<>1)+1)*r+(q*r*(r-1)>>1) for q, r in p.items()),prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n))) # Chai Wah Wu, Jul 02 2024
A088316
a(n) = 13*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 13.
Original entry on oeis.org
2, 13, 171, 2236, 29239, 382343, 4999698, 65378417, 854919119, 11179326964, 146186169651, 1911599532427, 24996980091202, 326872340718053, 4274337409425891, 55893258663254636, 730886700031736159, 9557420359075824703, 124977351368017457298, 1634262988143302769577
Offset: 0
Nikolay V. Kosinov, Dmitry V. Polyakov (kosinov(AT)unitron.com.ua), Nov 06 2003
-
I:=[2,13]; [n le 2 select I[n] else 13*Self(n-1) +Self(n-2): n in [1..31]]; // G. C. Greubel, Dec 13 2022
-
LinearRecurrence[{13,1}, {2,13}, 31] (* Stefano Spezia, Sep 20 2022 *)
-
A088316=BinaryRecurrenceSequence(13,1,2,13)
[A088316(n) for n in range(31)] # G. C. Greubel, Dec 13 2022
A121337
Number of idempotent relations on n labeled elements.
Original entry on oeis.org
1, 2, 11, 123, 2360, 73023, 3465357
Offset: 0
Florian Kammüller (flokam(AT)cs.tu-berlin.de), Aug 28 2006
a(2) = 11 because given a set {a,b} of two elements, of the 2^(2*2) = 16 relations on the set, only 5 are not idempotent. - _Michael Somos_, Jul 28 2013
These 5 relations that are not idempotent are: {(a,b)}, {(b,a)}, {(a,b),(b,a)}, {(a,b),(b,a),(b,b)}, {(a,a),(a,b),(b,a)}. - _Geoffrey Critzer_, Aug 07 2016
- F. Kammüller, Interactive Theorem Proving in Software Engineering, Habilitationsschrift, Technische Universitaet Berlin (2006).
- Ki Hang Kim, Boolean Matrix Theory and Applications, Marcel Decker, 1982.
- G. Brinkmann and B. D. McKay, Counting unlabeled topologies and transitive relations, J. Integer Sequences, Volume 8, 2005.
- K. K.-H. Butler and G. Markowsky, The Number of Maximal Subgroups of the Semigroup of Binary Relations, Kyungpook Math. J. Vol 12, June 1972.
- D. A. Gregory, S. Kirkland, and N. J. Pullman, Power convergent Boolean matrices, Linear Algebra and its Applications, Volume 179, 15 January 1993, Pages 105-117.
- F. Kammüller, Counting idempotent relations.
- F. Kammüller and J. W. Sanders, Idempotent relations in Isabelle/HOL, International Colloquium on Theoretical Aspects of Computing, ICTAC'04. Volume 3407 of Lecture Notes in Computer Science, Springer-Verlag (2005).
- G. Pfeiffer, Counting transitive relations, J. Integer Sequences, Volume 7, 2004, #3.
- D. Rosenblatt, On the graphs of finite Boolean relation matrices, Journal of Research of the National Bureau of Standards, 67B No. 4, 1963.
- B. M. Schein, A construction for idempotent binary relations, Proc. Japan Acad., Vol. 46, No. 3 (1970), pp. 246-247.
-
Prepend[Table[Length[Select[Tuples[Tuples[{0, 1}, n], n], (MatrixPower[#, 2] /. x_ /; x > 0 -> 1) == # &]], {n, 1, 4}], 1] (* Geoffrey Critzer, Aug 07 2016 *)
A169720
a(n) = (3*2^(n-1)-1)*(3*2^n-1).
Original entry on oeis.org
1, 10, 55, 253, 1081, 4465, 18145, 73153, 293761, 1177345, 4713985, 18865153, 75479041, 301953025, 1207885825, 4831690753, 19327057921, 77308821505, 309236465665, 1236948221953, 4947797606401, 19791199862785, 79164818325505, 316659311050753, 1266637319700481
Offset: 0
Alice V. Kleeva (alice27353(AT)gmail.com), Jan 19 2010
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Alice V. Kleeva, Grid for this sequence
- Alice V. Kleeva, Illustration of initial terms
- Robert Munafo, Sequence A169720, and two others by Alice V. Kleeva
- Robert Munafo, Sequence A169720, and two others by Alice V. Kleeva [Cached copy, in pdf format, included with permission]
- Index entries for linear recurrences with constant coefficients, signature (7,-14,8).
-
I:=[1, 10, 55]; [n le 3 select I[n] else 7*Self(n-1)-14*Self(n-2)+8*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Dec 03 2012
-
CoefficientList[Series[(1 + 3*x - x^2)/((1-x)*(1-2*x)*(1-4*x)), {x, 0, 30}], x] (* or *) LinearRecurrence[{7, -14, 8}, {1, 10, 55}, 30] (* Vincenzo Librandi, Dec 03 2012 *)
-
a(n)=polcoeff((1+3*x-x^2)/((1-x)*(1-2*x)*(1-4*x)+x*O(x^n)),n) \\ Paul D. Hanna, Apr 29 2010
A340264
T(n, k) = Sum_{j=0..k} binomial(n, k - j)*Stirling2(n - k + j, j). Triangle read by rows, 0 <= k <= n.
Original entry on oeis.org
1, 0, 2, 0, 1, 4, 0, 1, 6, 8, 0, 1, 11, 24, 16, 0, 1, 20, 70, 80, 32, 0, 1, 37, 195, 340, 240, 64, 0, 1, 70, 539, 1330, 1400, 672, 128, 0, 1, 135, 1498, 5033, 7280, 5152, 1792, 256, 0, 1, 264, 4204, 18816, 35826, 34272, 17472, 4608, 512
Offset: 0
[0] 1;
[1] 0, 2;
[2] 0, 1, 4;
[3] 0, 1, 6, 8;
[4] 0, 1, 11, 24, 16;
[5] 0, 1, 20, 70, 80, 32;
[6] 0, 1, 37, 195, 340, 240, 64;
[7] 0, 1, 70, 539, 1330, 1400, 672, 128;
[8] 0, 1, 135, 1498, 5033, 7280, 5152, 1792, 256;
[9] 0, 1, 264, 4204, 18816, 35826, 34272, 17472, 4608, 512;
Alternating sum of row(n) is
A109747(n).
-
egf := exp(t*(exp(-x) - x - 1));
ser := series(egf, x, 22):
p := n -> coeff(ser, x, n);
seq(seq((-1)^n*n!*coeff(p(n), t, k), k=0..n), n = 0..10);
# Alternative:
T := (n, k) -> add(binomial(n, k - j)*Stirling2(n - k + j, j), j=0..k):
seq(seq(T(n, k), k = 0..n), n=0..9); # Peter Luschny, Feb 09 2021
-
T[ n_, k_] := Sum[ Binomial[n, k-j] StirlingS2[n-k+j, j], {j, 0 ,k}]; (* Michael Somos, Jul 18 2021 *)
-
T(n, k) = sum(j=0, k, binomial(n, j)*stirling(n-j, k-j, 2)); /* Michael Somos, Jul 18 2021 */
A085628
Number of antisymmetric transitive binary relations on n labeled points.
Original entry on oeis.org
1, 2, 12, 152, 3504, 135392, 8321472, 784621952, 110521185024, 22789653765632, 6769730814753792, 2859584874712881152, 1699286839524775931904, 1407801166901961190203392, 1613567168628788544015286272, 2541721059997800475952740401152, 5470980000021882982488097199161344
Offset: 0
Goetz Pfeiffer (goetz.pfeiffer(AT)nuigalway.ie), Jan 21 2004
Cf.
A079265 (unlabeled antisymmetric transitive relations),
A001035 (labeled partial orders),
A000798 (labeled reflexive transitive relations),
A006905 (labeled transitive relations).
A091073
Number of transitive relations on n unlabeled points.
Original entry on oeis.org
1, 2, 8, 39, 242, 1895, 19051, 246895, 4145108, 90325655, 2555630036, 93810648902, 4461086120602, 274339212258846, 21775814889230580, 2226876304576948549
Offset: 0
Goetz Pfeiffer (goetz.pfeiffer(AT)nuigalway.ie), Jan 21 2004
- Gunnar Brinkmann and Brendan D. McKay, Counting unlabelled topologies and transitive relations.
- Gunnar Brinkmann and Brendan D. McKay, Counting Unlabelled Topologies and Transitive Relations, Journal of Integer Sequences, Vol. 8 (2005), Article 05.2.1.
- G. Pfeiffer, Counting Transitive Relations, preprint, 2004.
- G. Pfeiffer, Counting Transitive Relations, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.2.
Cf.
A079265 (antisymmetric transitive relations),
A001930 (reflexive transitive relations),
A000112 (partial orders),
A006905 (labeled transitive relations).
A355730
Number of binary relations R on [n] such that R is contained in R^2.
Original entry on oeis.org
1, 2, 13, 333, 34924, 15339497, 28399641433
Offset: 0
a(2) = 13 because all 16 binary relations on [2] are dense except for {{0,1},{0,0}}, {{0,0},{1,0}}, {{0,1},{1,0}}.
- G. Markowsky, Bounds on the index and period of a binary relation on a finite set, Semigroup Forum, Vol 13 (1977), 253-259.
- D. Rosenblatt, On the graphs of finite Boolean relation matrices, Journal of Research of the National Bureau of Standards, 67B No. 4, 1963.
- B. M. Schein, A construction for idempotent binary relations, Proc. Japan Acad., Vol. 46, No. 3 (1970), pp. 246-247.
- Wikipedia, Dense order.
-
Table[B = Tuples[Tuples[{0, 1}, nn], nn]; subsetQ[matrix1_, matrix2_] :=
Apply[And, Map[! MemberQ[#, 1] &, matrix1 - matrix2]];Select[B, subsetQ[#, Clip[#.#]] &] // Length, {nn, 0, 4}]
Showing 1-10 of 28 results.
Comments