cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340268 Composite numbers k>1 such that (s-1) | (d-1) for each d | k, where s = lpf(k) = A020639(k).

Original entry on oeis.org

4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96
Offset: 1

Views

Author

Maxim Karimov, Jan 02 2021

Keywords

Comments

Not a duplicate of A340058 because the complements A335902 and A340269 differ. - R. J. Mathar, Feb 16 2021

Crossrefs

Cf. A000010, A000961, A020639, A340058, A335902, A340269 (complement).
Contains all composite terms of at least A003586, A003591, A003592, A003593, A003596.

Programs

  • MATLAB
    n=300; % gives all terms of the sequence not exceeding n
    A=[];
    for i=2:n
        lpf=2;
        while mod(i,lpf)~=0
            lpf=lpf+1;
        end
        for d=1:floor(i/2)
            if mod(i,d)==0 && mod(d-1,lpf-1)~=0
                break
            elseif d==floor(i/2)
                A=[A i];
            end
        end
    end
    
  • Maple
    with(numtheory):
    q:= n-> (f-> andmap(d-> irem(d-1, f)=0, divisors(n)))(min(factorset(n))-1):
    select(not isprime and q, [$2..96])[];  # Alois P. Heinz, Feb 12 2021
  • Mathematica
    Select[Range[2, 96], Function[{n, s}, And[! PrimeQ@ n, AllTrue[Divisors[n] - 1, Mod[#, s] == 0 &]]] @@ {#, FactorInteger[#][[1, 1]] - 1} &] (* Michael De Vlieger, Feb 12 2021 *)
  • PARI
    isok(c) = if ((c>1) && !isprime(c), my(f=factor(c)[,1]); for (k=1, #f~, if ((f[k]-1) % (f[1]-1), return(0))); return(1)); \\ Michel Marcus, Jan 03 2021