cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A376542 G.f.: Sum_{k>=0} x^(k^2) * Product_{j=1..k} (1 + x^(2*j))^2.

Original entry on oeis.org

1, 1, 0, 2, 1, 1, 2, 0, 3, 1, 4, 2, 3, 3, 2, 6, 2, 7, 2, 8, 3, 10, 6, 8, 9, 8, 12, 8, 16, 6, 20, 8, 22, 10, 24, 14, 27, 20, 26, 26, 25, 34, 26, 42, 25, 51, 26, 58, 31, 66, 36, 72, 43, 76, 56, 82, 70, 82, 86, 84, 106, 87, 124, 90, 145, 95, 168, 102, 187, 115, 206
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 28 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=100; CoefficientList[Series[Sum[x^(k^2)*Product[1+x^(2*j), {j, 1, k}]^2, {k, 0, Sqrt[nmax]}], {x, 0, nmax}], x]

Formula

a(n) ~ A369557(n) / 4.

A340623 The number of partitions of n without repeated odd parts having more even parts than odd parts.

Original entry on oeis.org

0, 0, 1, 0, 2, 1, 3, 3, 5, 7, 8, 13, 14, 23, 23, 37, 39, 59, 63, 90, 101, 136, 156, 201, 239, 296, 355, 428, 523, 617, 754, 878, 1078, 1243, 1517, 1741, 2121, 2426, 2928, 3348, 4021, 4596, 5468, 6257, 7400, 8472, 9936, 11389, 13285, 15233, 17645, 20244, 23346
Offset: 0

Views

Author

Jeremy Lovejoy, Jan 13 2021

Keywords

Examples

			a(7) = 3 counts the partitions [4,2,1], [3,2,2], and [2,2,2,1].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, c) option remember; `if`(n=0,
          `if`(c<0, 1, 0), `if`(i<1, 0, (t-> add(b(n-i*j, i-1, c+j*
          `if`(t, 1, -1)), j=0..min(n/i, `if`(t, 1, n))))(i::odd)))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..60);  # Alois P. Heinz, Jan 13 2021
  • Mathematica
    nmax = 60; CoefficientList[Series[Product[(1 + x^(2*k - 1))/(1 - x^(2*k)), {k, 1, nmax/2}] - Sum[x^(k^2)/Product[(1 - x^(2*j))^2, {j, 1, k}], {k, 0, Sqrt[nmax]}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 14 2021 *)
  • PARI
    my(N=66, x='x+O('x^N)); concat([0, 0], Vec(prod(k=1, N, (1+x^(2*k-1))/(1-x^(2*k)))-sum(k=0, sqrt(N), x^(k^2)/prod(j=1, k, (1-x^(2*j))^2)))) \\ Seiichi Manyama, Jan 14 2021

Formula

G.f.: (Product_{k>=1} (1+q^(2*k-1))/(1-q^(2*k))) - Sum_{n>=0} q^(n^2)/Product_{k=1..n} (1-q^(2*k))^2.

A376581 G.f.: Sum_{k>=0} x^(k^2) / Product_{j=1..k} (1 - x^(2*j-1))^2.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 9, 13, 17, 22, 30, 38, 48, 62, 78, 97, 122, 151, 184, 228, 278, 335, 408, 491, 588, 707, 843, 1000, 1189, 1407, 1658, 1955, 2295, 2686, 3145, 3670, 4270, 4968, 5763, 6671, 7720, 8909, 10263, 11816, 13577, 15574, 17850, 20424, 23333, 26638, 30365
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 29 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=100; CoefficientList[Series[Sum[x^(k^2)/Product[1-x^(2*j-1), {j, 1, k}]^2, {k, 0, Sqrt[nmax]}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(Pi*sqrt(2*n/5)) / (4*5^(1/4)*sqrt(n)).

A376625 G.f.: Sum_{k>=0} x^(k*(k+1)/2) / Product_{j=1..k} (1 - x^(2*j))^2.

Original entry on oeis.org

1, 1, 0, 3, 0, 5, 1, 9, 2, 13, 6, 20, 12, 27, 23, 39, 40, 51, 69, 70, 108, 92, 169, 125, 252, 166, 370, 227, 527, 307, 743, 425, 1021, 586, 1393, 816, 1867, 1132, 2481, 1577, 3256, 2184, 4247, 3019, 5479, 4149, 7036, 5670, 8966, 7698, 11377, 10386, 14356, 13915, 18060
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 30 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=80; CoefficientList[Series[Sum[x^(k*(k+1)/2)/Product[1-x^(2*j), {j, 1, k}]^2, {k, 0, Sqrt[2*nmax]}], {x, 0, nmax}], x]

Formula

G.f.: Sum_{k>=0} Product_{j=1..k} x^j/(1 - x^(2*j))^2.
a(n) ~ (r^(1/4) * sqrt(log(r)^2 + 2*polylog(2, sqrt(r))) / (2*Pi*sqrt(1 + 3*r^2))) * A376658^sqrt(n) / n, where r = A072223 = 0.52488859865640479389948613854128391569... is the smallest real root of the equation (1 - r^2)^2 = r.
Showing 1-4 of 4 results.