cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A340610 Numbers whose number of prime factors (A001222) divides their greatest prime index (A061395).

Original entry on oeis.org

2, 3, 5, 6, 7, 9, 11, 13, 14, 17, 19, 20, 21, 23, 26, 29, 30, 31, 35, 37, 38, 39, 41, 43, 45, 47, 49, 50, 52, 53, 56, 57, 58, 59, 61, 65, 67, 71, 73, 74, 75, 78, 79, 83, 84, 86, 87, 89, 91, 92, 95, 97, 101, 103, 106, 107, 109, 111, 113, 117, 122, 125, 126, 127
Offset: 1

Views

Author

Gus Wiseman, Jan 27 2021

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
     2: {1}        29: {10}       56: {1,1,1,4}
     3: {2}        30: {1,2,3}    57: {2,8}
     5: {3}        31: {11}       58: {1,10}
     6: {1,2}      35: {3,4}      59: {17}
     7: {4}        37: {12}       61: {18}
     9: {2,2}      38: {1,8}      65: {3,6}
    11: {5}        39: {2,6}      67: {19}
    13: {6}        41: {13}       71: {20}
    14: {1,4}      43: {14}       73: {21}
    17: {7}        45: {2,2,3}    74: {1,12}
    19: {8}        47: {15}       75: {2,3,3}
    20: {1,1,3}    49: {4,4}      78: {1,2,6}
    21: {2,4}      50: {1,3,3}    79: {22}
    23: {9}        52: {1,1,6}    83: {23}
    26: {1,6}      53: {16}       84: {1,1,2,4}
		

Crossrefs

Note: Heinz numbers are given in parentheses below.
The case of equality is A047993 (A106529).
The case where all parts are multiples, not just the maximum part, is A143773 (A316428), with strict case A340830, while the case of factorizations is A340853.
These are the Heinz numbers of certain partitions counted by A168659.
The reciprocal version is A340609.
The squarefree case is A340828 (A340856).
A001222 counts prime factors.
A006141 counts partitions whose length equals their minimum (A324522).
A056239 adds up prime indices.
A061395 selects the maximum prime index.
A067538 counts partitions whose length divides their sum (A316413).
A067538 counts partitions whose maximum divides their sum (A326836).
A112798 lists the prime indices of each positive integer.
A200750 counts partitions with length coprime to maximum (A340608).

Programs

  • Maple
    filter:= proc(n) local F,m,g,t;
      F:= ifactors(n)[2];
      m:= add(t[2],t=F);
      g:= numtheory:-pi(max(seq(t[1],t=F)));
      g mod m = 0;
    end proc:
    select(filter, [$2..1000]); # Robert Israel, Feb 08 2021
  • Mathematica
    Select[Range[2,100],Divisible[PrimePi[FactorInteger[#][[-1,1]]],PrimeOmega[#]]&]

Formula

A001222(a(n)) divides A061395(a(n)).

A340608 The number of prime factors of n (A001222) is relatively prime to the maximum prime index of n (A061395).

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, 19, 22, 23, 25, 27, 28, 29, 31, 32, 33, 34, 37, 40, 41, 42, 43, 44, 46, 47, 48, 51, 53, 55, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 72, 73, 76, 77, 79, 80, 82, 83, 85, 88, 89, 90, 93, 94, 97, 98, 99
Offset: 1

Views

Author

Gus Wiseman, Jan 27 2021

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
     2: {1}          22: {1,5}          44: {1,1,5}
     3: {2}          23: {9}            46: {1,9}
     4: {1,1}        25: {3,3}          47: {15}
     5: {3}          27: {2,2,2}        48: {1,1,1,1,2}
     7: {4}          28: {1,1,4}        51: {2,7}
     8: {1,1,1}      29: {10}           53: {16}
    10: {1,3}        31: {11}           55: {3,5}
    11: {5}          32: {1,1,1,1,1}    59: {17}
    12: {1,1,2}      33: {2,5}          60: {1,1,2,3}
    13: {6}          34: {1,7}          61: {18}
    15: {2,3}        37: {12}           62: {1,11}
    16: {1,1,1,1}    40: {1,1,1,3}      63: {2,2,4}
    17: {7}          41: {13}           64: {1,1,1,1,1,1}
    18: {1,2,2}      42: {1,2,4}        66: {1,2,5}
    19: {8}          43: {14}           67: {19}
		

Crossrefs

Note: Heinz numbers are given in parentheses below.
These are the Heinz numbers of the partitions counted by A200750.
The case of equality is A047993 (A106529).
The divisible instead of coprime version is A168659 (A340609).
The dividing instead of coprime version is A168659 (A340610), with strict case A340828 (A340856).
A001222 counts prime factors.
A006141 counts partitions whose length equals their minimum (A324522).
A051424 counts singleton or pairwise coprime partitions (A302569).
A056239 adds up prime indices.
A061395 selects the maximum prime index.
A067538 counts partitions whose length divides their sum (A316413).
A067538 counts partitions whose maximum divides their sum (A326836).
A112798 lists the prime indices of each positive integer.
A259936 counts singleton or pairwise coprime factorizations.
A326849 counts partitions whose sum divides length times maximum (A326848).
A327516 counts pairwise coprime partitions (A302696).

Programs

  • Mathematica
    Select[Range[100],GCD[PrimeOmega[#],PrimePi[FactorInteger[#][[-1,1]]]]==1&]

A340856 Squarefree numbers whose greatest prime index (A061395) is divisible by their number of prime factors (A001222).

Original entry on oeis.org

2, 3, 5, 6, 7, 11, 13, 14, 17, 19, 21, 23, 26, 29, 30, 31, 35, 37, 38, 39, 41, 43, 47, 53, 57, 58, 59, 61, 65, 67, 71, 73, 74, 78, 79, 83, 86, 87, 89, 91, 95, 97, 101, 103, 106, 107, 109, 111, 113, 122, 127, 129, 130, 131, 133, 137, 138, 139, 142, 143, 145
Offset: 1

Views

Author

Gus Wiseman, Feb 05 2021

Keywords

Comments

Also Heinz numbers of strict integer partitions whose greatest part is divisible by their number of parts. These partitions are counted by A340828.

Examples

			The sequence of terms together with their prime indices begins:
      2: {1}         31: {11}       71: {20}
      3: {2}         35: {3,4}      73: {21}
      5: {3}         37: {12}       74: {1,12}
      6: {1,2}       38: {1,8}      78: {1,2,6}
      7: {4}         39: {2,6}      79: {22}
     11: {5}         41: {13}       83: {23}
     13: {6}         43: {14}       86: {1,14}
     14: {1,4}       47: {15}       87: {2,10}
     17: {7}         53: {16}       89: {24}
     19: {8}         57: {2,8}      91: {4,6}
     21: {2,4}       58: {1,10}     95: {3,8}
     23: {9}         59: {17}       97: {25}
     26: {1,6}       61: {18}      101: {26}
     29: {10}        65: {3,6}     103: {27}
     30: {1,2,3}     67: {19}      106: {1,16}
		

Crossrefs

Note: Heinz number sequences are given in parentheses below.
The case of equality, and the reciprocal version, are both A002110.
The non-strict reciprocal version is A168659 (A340609).
The non-strict version is A168659 (A340610).
These are the Heinz numbers of partitions counted by A340828.
A001222 counts prime factors.
A006141 counts partitions whose length equals their minimum (A324522).
A056239 adds up the prime indices.
A061395 selects the maximum prime index.
A067538 counts partitions whose length divides their sum (A316413/A326836).
A112798 lists the prime indices of each positive integer.
A200750 counts partitions with length coprime to maximum (A340608).
A257541 gives the rank of the partition with Heinz number n.
A340830 counts strict partitions whose parts are multiples of the length.

Programs

  • Mathematica
    Select[Range[2,100],SquareFreeQ[#]&&Divisible[PrimePi[FactorInteger[#][[-1,1]]],PrimeOmega[#]]&]

A340928 Least image of A001222 applied to the prime indices of n.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 3, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 2, 0, 1, 0, 4, 0, 1, 0, 1, 0, 1, 0, 3, 0, 1, 0, 1, 0, 1, 0, 1, 0, 3, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1
Offset: 1

Views

Author

Gus Wiseman, Jan 28 2021

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 4277 are {4,6,15} with images {2,2,2}, so a(4277) = 2.
The prime indices of 8303 are {8,8,9} with images {3,3,2}, so a(8303) = 2.
		

Crossrefs

Positions of 0's are A000079.
Positions of first appearances are A033844.
The version for maximum is A340691.
A003963 multiplies together the prime indices.
A026794 counts partitions by sum and minimum.
A056239 adds up the prime indices.
A061395 selects the greatest prime index.
A112798 lists the prime indices of each positive integer.

Programs

  • Mathematica
    Table[If[n==1,0,Min@@PrimeOmega/@PrimePi/@First/@FactorInteger[n]],{n,100}]
Showing 1-4 of 4 results.