cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A168659 Number of partitions of n such that the number of parts is divisible by the greatest part. Also number of partitions of n such that the greatest part is divisible by the number of parts.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 6, 6, 8, 9, 14, 16, 22, 25, 33, 39, 51, 60, 79, 92, 116, 137, 174, 204, 254, 300, 368, 435, 530, 625, 760, 896, 1076, 1267, 1518, 1780, 2121, 2484, 2946, 3444, 4070, 4749, 5594, 6514, 7637, 8879, 10384, 12043, 14040, 16255
Offset: 1

Views

Author

Vladeta Jovovic, Dec 02 2009

Keywords

Examples

			a(5)=3 because in the partitions [1,1,1,1,1], [1,1,1,2], [1,1,3] the number of parts is divisible by the greatest part; not true for the partitions [1,2,2],[2,3], [1,4], and [5]. - _Emeric Deutsch_, Dec 04 2009
From _Gus Wiseman_, Feb 08 2021: (Start)
The a(1) = 1 through a(10) = 9 partitions of the first type:
  1  11  21   22    311    321     322      332       333        4222
         111  1111  2111   2211    331      2222      4221       4321
                    11111  111111  2221     4211      4311       4411
                                   4111     221111    51111      52111
                                   211111   311111    222111     222211
                                   1111111  11111111  321111     322111
                                                      21111111   331111
                                                      111111111  22111111
                                                                 1111111111
The a(1) = 1 through a(11) = 14 partitions of the second type (A=10, B=11):
  1   2   3    4    5     6     7      8      9       A       B
          21   22   41    42    43     44     63      64      65
                    311   321   61     62     81      82      83
                                322    332    333     622     A1
                                331    611    621     631     632
                                4111   4211   4221    4222    641
                                              4311    4321    911
                                              51111   4411    4322
                                                      52111   4331
                                                              4421
                                                              8111
                                                              52211
                                                              53111
                                                              611111
(End)
		

Crossrefs

Note: A-numbers of Heinz-number sequences are in parentheses below.
The case of equality is A047993 (A106529).
The Heinz numbers of these partitions are A340609/A340610.
If all parts (not just the greatest) are divisors we get A340693 (A340606).
The strict case in the second interpretation is A340828 (A340856).
A006141 = partitions whose length equals their minimum (A324522).
A067538 = partitions whose length/max divides their sum (A316413/A326836).
A200750 = partitions with length coprime to maximum (A340608).
Row sums of A350879.

Programs

  • Maple
    a := proc (n) local pn, ct, j: with(combinat): pn := partition(n): ct := 0: for j to numbpart(n) do if `mod`(nops(pn[j]), max(seq(pn[j][i], i = 1 .. nops(pn[j])))) = 0 then ct := ct+1 else end if end do: ct end proc: seq(a(n), n = 1 .. 50); # Emeric Deutsch, Dec 04 2009
  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Divisible[Length[#],Max[#]]&]],{n,30}] (* Gus Wiseman, Feb 08 2021 *)
    nmax = 100; s = 0; Do[s += Normal[Series[Sum[x^((m+1)*k - 1) * Product[(1 - x^(m*k + j - 1))/(1 - x^j), {j, 1, k-1}], {k, 1, (1 + nmax)/(1 + m) + 1}], {x, 0, nmax}]], {m, 1, nmax}]; Rest[CoefficientList[s, x]] (* Vaclav Kotesovec, Oct 18 2024 *)

Formula

G.f.: Sum_{i>=1} Sum_{j>=1} x^((i+1)*j-1) * Product_{k=1..j-1} (1-x^(i*j+k-1))/(1-x^k). - Seiichi Manyama, Jan 24 2022
a(n) ~ c * exp(Pi*sqrt(2*n/3)) / n^(3/2), where c = 0.04628003... - Vaclav Kotesovec, Nov 16 2024

Extensions

Extended by Emeric Deutsch, Dec 04 2009

A340610 Numbers whose number of prime factors (A001222) divides their greatest prime index (A061395).

Original entry on oeis.org

2, 3, 5, 6, 7, 9, 11, 13, 14, 17, 19, 20, 21, 23, 26, 29, 30, 31, 35, 37, 38, 39, 41, 43, 45, 47, 49, 50, 52, 53, 56, 57, 58, 59, 61, 65, 67, 71, 73, 74, 75, 78, 79, 83, 84, 86, 87, 89, 91, 92, 95, 97, 101, 103, 106, 107, 109, 111, 113, 117, 122, 125, 126, 127
Offset: 1

Views

Author

Gus Wiseman, Jan 27 2021

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
     2: {1}        29: {10}       56: {1,1,1,4}
     3: {2}        30: {1,2,3}    57: {2,8}
     5: {3}        31: {11}       58: {1,10}
     6: {1,2}      35: {3,4}      59: {17}
     7: {4}        37: {12}       61: {18}
     9: {2,2}      38: {1,8}      65: {3,6}
    11: {5}        39: {2,6}      67: {19}
    13: {6}        41: {13}       71: {20}
    14: {1,4}      43: {14}       73: {21}
    17: {7}        45: {2,2,3}    74: {1,12}
    19: {8}        47: {15}       75: {2,3,3}
    20: {1,1,3}    49: {4,4}      78: {1,2,6}
    21: {2,4}      50: {1,3,3}    79: {22}
    23: {9}        52: {1,1,6}    83: {23}
    26: {1,6}      53: {16}       84: {1,1,2,4}
		

Crossrefs

Note: Heinz numbers are given in parentheses below.
The case of equality is A047993 (A106529).
The case where all parts are multiples, not just the maximum part, is A143773 (A316428), with strict case A340830, while the case of factorizations is A340853.
These are the Heinz numbers of certain partitions counted by A168659.
The reciprocal version is A340609.
The squarefree case is A340828 (A340856).
A001222 counts prime factors.
A006141 counts partitions whose length equals their minimum (A324522).
A056239 adds up prime indices.
A061395 selects the maximum prime index.
A067538 counts partitions whose length divides their sum (A316413).
A067538 counts partitions whose maximum divides their sum (A326836).
A112798 lists the prime indices of each positive integer.
A200750 counts partitions with length coprime to maximum (A340608).

Programs

  • Maple
    filter:= proc(n) local F,m,g,t;
      F:= ifactors(n)[2];
      m:= add(t[2],t=F);
      g:= numtheory:-pi(max(seq(t[1],t=F)));
      g mod m = 0;
    end proc:
    select(filter, [$2..1000]); # Robert Israel, Feb 08 2021
  • Mathematica
    Select[Range[2,100],Divisible[PrimePi[FactorInteger[#][[-1,1]]],PrimeOmega[#]]&]

Formula

A001222(a(n)) divides A061395(a(n)).

A340609 Numbers whose number of prime factors (A001222) is divisible by their greatest prime index (A061395).

Original entry on oeis.org

2, 4, 6, 8, 9, 16, 20, 24, 30, 32, 36, 45, 50, 54, 56, 64, 75, 81, 84, 96, 125, 126, 128, 140, 144, 160, 176, 189, 196, 210, 216, 240, 256, 264, 294, 315, 324, 350, 360, 384, 396, 400, 416, 440, 441, 486, 490, 512, 525, 540, 576, 594, 600, 616, 624, 660, 686
Offset: 1

Views

Author

Gus Wiseman, Jan 27 2021

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
If n is a term, then so is n^k for k > 1. - Robert Israel, Feb 08 2021

Examples

			The sequence of terms together with their prime indices begins:
      2: {1}             64: {1,1,1,1,1,1}      216: {1,1,1,2,2,2}
      4: {1,1}           75: {2,3,3}            240: {1,1,1,1,2,3}
      6: {1,2}           81: {2,2,2,2}          256: {1,1,1,1,1,1,1,1}
      8: {1,1,1}         84: {1,1,2,4}          264: {1,1,1,2,5}
      9: {2,2}           96: {1,1,1,1,1,2}      294: {1,2,4,4}
     16: {1,1,1,1}      125: {3,3,3}            315: {2,2,3,4}
     20: {1,1,3}        126: {1,2,2,4}          324: {1,1,2,2,2,2}
     24: {1,1,1,2}      128: {1,1,1,1,1,1,1}    350: {1,3,3,4}
     30: {1,2,3}        140: {1,1,3,4}          360: {1,1,1,2,2,3}
     32: {1,1,1,1,1}    144: {1,1,1,1,2,2}      384: {1,1,1,1,1,1,1,2}
     36: {1,1,2,2}      160: {1,1,1,1,1,3}      396: {1,1,2,2,5}
     45: {2,2,3}        176: {1,1,1,1,5}        400: {1,1,1,1,3,3}
     50: {1,3,3}        189: {2,2,2,4}          416: {1,1,1,1,1,6}
     54: {1,2,2,2}      196: {1,1,4,4}          440: {1,1,1,3,5}
     56: {1,1,1,4}      210: {1,2,3,4}          441: {2,2,4,4}
		

Crossrefs

Note: Heinz numbers are given in parentheses below.
The case of equality is A047993 (A106529).
These are the Heinz numbers of certain partitions counted by A168659.
The reciprocal version is A340610, with strict case A340828 (A340856).
If all parts (not just the greatest) are divisors we get A340693 (A340606).
A001222 counts prime factors.
A006141 counts partitions whose length equals their minimum (A324522).
A056239 adds up prime indices.
A061395 selects the maximum prime index.
A067538 counts partitions whose length divides their sum (A316413).
A067538 counts partitions whose maximum divides their sum (A326836).
A112798 lists the prime indices of each positive integer.
A200750 counts partitions with length coprime to maximum (A340608).

Programs

  • Maple
    filter:= proc(n) local F,m,g,t;
      F:= ifactors(n)[2];
      m:= add(t[2],t=F);
      g:= numtheory:-pi(max(seq(t[1],t=F)));
      m mod g = 0;
    end proc:
    seelect(filter, [$2..1000]); # Robert Israel, Feb 08 2021
  • Mathematica
    Select[Range[2,100],Divisible[PrimeOmega[#],PrimePi[FactorInteger[#][[-1,1]]]]&]

Formula

A061395(a(n)) divides A001222(a(n)).

A340608 The number of prime factors of n (A001222) is relatively prime to the maximum prime index of n (A061395).

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, 19, 22, 23, 25, 27, 28, 29, 31, 32, 33, 34, 37, 40, 41, 42, 43, 44, 46, 47, 48, 51, 53, 55, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 72, 73, 76, 77, 79, 80, 82, 83, 85, 88, 89, 90, 93, 94, 97, 98, 99
Offset: 1

Views

Author

Gus Wiseman, Jan 27 2021

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
     2: {1}          22: {1,5}          44: {1,1,5}
     3: {2}          23: {9}            46: {1,9}
     4: {1,1}        25: {3,3}          47: {15}
     5: {3}          27: {2,2,2}        48: {1,1,1,1,2}
     7: {4}          28: {1,1,4}        51: {2,7}
     8: {1,1,1}      29: {10}           53: {16}
    10: {1,3}        31: {11}           55: {3,5}
    11: {5}          32: {1,1,1,1,1}    59: {17}
    12: {1,1,2}      33: {2,5}          60: {1,1,2,3}
    13: {6}          34: {1,7}          61: {18}
    15: {2,3}        37: {12}           62: {1,11}
    16: {1,1,1,1}    40: {1,1,1,3}      63: {2,2,4}
    17: {7}          41: {13}           64: {1,1,1,1,1,1}
    18: {1,2,2}      42: {1,2,4}        66: {1,2,5}
    19: {8}          43: {14}           67: {19}
		

Crossrefs

Note: Heinz numbers are given in parentheses below.
These are the Heinz numbers of the partitions counted by A200750.
The case of equality is A047993 (A106529).
The divisible instead of coprime version is A168659 (A340609).
The dividing instead of coprime version is A168659 (A340610), with strict case A340828 (A340856).
A001222 counts prime factors.
A006141 counts partitions whose length equals their minimum (A324522).
A051424 counts singleton or pairwise coprime partitions (A302569).
A056239 adds up prime indices.
A061395 selects the maximum prime index.
A067538 counts partitions whose length divides their sum (A316413).
A067538 counts partitions whose maximum divides their sum (A326836).
A112798 lists the prime indices of each positive integer.
A259936 counts singleton or pairwise coprime factorizations.
A326849 counts partitions whose sum divides length times maximum (A326848).
A327516 counts pairwise coprime partitions (A302696).

Programs

  • Mathematica
    Select[Range[100],GCD[PrimeOmega[#],PrimePi[FactorInteger[#][[-1,1]]]]==1&]

A340691 Greatest image of A001222 over the prime indices of n.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 2, 0, 1, 1, 1, 1, 2, 2, 1, 0, 1, 1, 3, 1, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 0, 1, 1, 2, 1, 3, 3, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 4, 1, 1, 2, 3, 2, 1, 1, 3, 1, 2, 0, 2, 1, 1, 1, 2, 2, 3, 1, 2, 3, 1, 3, 2, 2, 2, 1, 1, 1, 1, 2, 1, 2, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Jan 28 2021

Keywords

Comments

For the initial term, we assume the empty set has maximum image 0.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 4070 are {1,3,5,12} -> {0,1,1,3}, so a(4070) = 3.
The prime indices of 8892 are {1,1,2,2,6,8} -> {0,0,1,1,2,3} so a(8892) = 3.
		

Crossrefs

Positions of first appearances are A033844.
Positions of 0's are A000079.
Positions of terms <= 1 are A302540.
Positions of 1's are A302540 \ A000079.
The version for minimum is A340928.
A003963 multiplies together the prime indices.
A056239 adds up the prime indices.
A061395 selects the greatest prime index.
A072233 counts partitions by sum and maximum.
A112798 lists the prime indices of each positive integer.
A303975 counts distinct prime factors in the product of prime indices.

Programs

  • Mathematica
    Table[If[n==1,0,Max@@PrimeOmega/@PrimePi/@First/@FactorInteger[n]],{n,100}]
Showing 1-5 of 5 results.