A341224 Primes p such that (p^32 + 1)/2 is prime.
3, 163, 181, 191, 229, 251, 839, 971, 1181, 1201, 1489, 1801, 1823, 1847, 1861, 1987, 2069, 2087, 3547, 3691, 3697, 6361, 6637, 6899, 6967, 7793, 7963, 8731, 8737, 10253, 10271, 10613, 10639, 10799, 11981, 12689, 12697, 13697, 13841, 14951, 15299, 16547, 16747
Offset: 1
Keywords
Examples
(3^32 + 1)/2 = 926510094425921 is prime, so 3 is a term. (5^32 + 1)/2 = 11641532182693481445313 = 641*75068993*241931001601, so 5 is not a term.
Links
- Jon E. Schoenfield, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
q:= p-> (q-> q(p) and q((p^32+1)/2))(isprime): select(q, [$3..20000])[]; # Alois P. Heinz, Feb 07 2021
-
Mathematica
Select[Range[17000], PrimeQ[#] && PrimeQ[(#^32 + 1)/2] &] (* Amiram Eldar, Feb 07 2021 *)
-
PARI
isok(p) = (p>2) && isprime(p) && isprime((p^32 + 1)/2); \\ Michel Marcus, Feb 07 2021
Comments