A341286 Numbers k such that k plus the sum of the fifth powers of the digits of k is a cube.
0, 2435, 3403, 5625, 8781, 11140, 22664, 23325, 32908, 33346, 34822, 41332, 58555, 99180, 103925, 109272, 133118, 136386, 145263, 170740, 180105, 182142, 194261, 207459, 208813, 228224, 249945, 251991, 266080, 305840, 341539, 351824, 359720, 372287, 380064, 415434
Offset: 1
Examples
2435 is a term since 2435 + 2^5 + 4^5 + 3^5 + 5^5 = 19^3; 3403 is a term since 3403 + 3^5 + 4^5 + 0^5 + 3^5 = 17^3.
Crossrefs
Cf. A055014 (sum of 5th powers of digits).
Programs
-
Maple
filter:= proc(n) local x, d; x:= n + add(d^5, d = convert(n, base, 10)); surd(x, 3)::integer end proc: select(filter, [$0..10^5]); # Robert Israel, Feb 09 2021
-
Mathematica
Select[Range[0, 500000], IntegerQ@ Power[# + Total[IntegerDigits[#]^5], 1/3] &] (* Michael De Vlieger, Feb 22 2021 *) Select[Range[0,416000],IntegerQ[Surd[#+Total[IntegerDigits[#]^5],3]]&] (* Harvey P. Dale, Jul 19 2022 *)
-
PARI
isok(k) = ispower(k+vecsum(apply(x->x^5, digits(k))), 3); \\ Michel Marcus, Feb 09 2021
-
Python
from sympy import integer_nthroot def powsum(n): return sum(int(d)**5 for d in str(n)) def ok(n): return integer_nthroot(n + powsum(n), 3)[1] def aupto(lim): alst = [] for k in range(lim+1): if ok(k): alst.append(k) return alst print(aupto(415434)) # Michael S. Branicky, Feb 22 2021
Extensions
More terms from Michel Marcus, Feb 09 2021
a(1)=0 prepended by Michael S. Branicky, Feb 22 2021