cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341286 Numbers k such that k plus the sum of the fifth powers of the digits of k is a cube.

Original entry on oeis.org

0, 2435, 3403, 5625, 8781, 11140, 22664, 23325, 32908, 33346, 34822, 41332, 58555, 99180, 103925, 109272, 133118, 136386, 145263, 170740, 180105, 182142, 194261, 207459, 208813, 228224, 249945, 251991, 266080, 305840, 341539, 351824, 359720, 372287, 380064, 415434
Offset: 1

Views

Author

Will Gosnell, Feb 08 2021

Keywords

Examples

			2435 is a term since 2435 + 2^5 + 4^5 + 3^5 + 5^5 = 19^3;
3403 is a term since 3403 + 3^5 + 4^5 + 0^5 + 3^5 = 17^3.
		

Crossrefs

Cf. A055014 (sum of 5th powers of digits).

Programs

  • Maple
    filter:= proc(n) local x, d;
      x:= n + add(d^5, d = convert(n, base, 10));
      surd(x, 3)::integer
    end proc:
    select(filter, [$0..10^5]); # Robert Israel, Feb 09 2021
  • Mathematica
    Select[Range[0, 500000], IntegerQ@ Power[# + Total[IntegerDigits[#]^5], 1/3] &] (* Michael De Vlieger, Feb 22 2021 *)
    Select[Range[0,416000],IntegerQ[Surd[#+Total[IntegerDigits[#]^5],3]]&] (* Harvey P. Dale, Jul 19 2022 *)
  • PARI
    isok(k) = ispower(k+vecsum(apply(x->x^5, digits(k))), 3); \\ Michel Marcus, Feb 09 2021
    
  • Python
    from sympy import integer_nthroot
    def powsum(n): return sum(int(d)**5 for d in str(n))
    def ok(n): return integer_nthroot(n + powsum(n), 3)[1]
    def aupto(lim):
      alst = []
      for k in range(lim+1):
        if ok(k): alst.append(k)
      return alst
    print(aupto(415434)) # Michael S. Branicky, Feb 22 2021

Extensions

More terms from Michel Marcus, Feb 09 2021
a(1)=0 prepended by Michael S. Branicky, Feb 22 2021