cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A341556 Fourier coefficients of the modular form F_{3A}^12.

Original entry on oeis.org

1, 72, 2376, 47592, 646344, 6305904, 45821160, 255215808, 1125009864, 4097478600, 12975540336, 37101202848, 96867424872, 232791251760, 526183909056, 1128351033648, 2286328733640, 4451427831312, 8386379869896, 15130456297056, 26613241744752, 45684436953024, 75935115663264
Offset: 0

Views

Author

Robert C. Lyons, Feb 14 2021

Keywords

Crossrefs

Formula

Convolution cube of A008655. - Georg Fischer, Mar 30 2023

Extensions

More terms from Georg Fischer, Mar 30 2023

A341561 Fourier coefficients of the modular form (1/t_{3A}) * F_{3A}^16.

Original entry on oeis.org

0, 1, 54, 1269, 16804, 134406, 628398, 1311968, -1701864, -14345991, -16443324, 25426764, 11246580, 16601078, 505866816, -113853762, -1326884336, 1507092642, -3873575034, 100819028, 2685180888, 6885133920, -20849400, 10111254408, -10371867912, -412371305, -58625773596
Offset: 0

Views

Author

Robert C. Lyons, Feb 14 2021

Keywords

Crossrefs

Programs

  • Sage
    def a(n):
        if n==0: return 0
        eta = x^(1/24)*product([(1 - x^k) for k in range(1, n)])
        t3A = ((eta/eta(x=x^3))^12 + 27)^2/(eta/eta(x=x^3))^12
        F3A = sum([rising_factorial(1/6, k)*rising_factorial(1/3, k)/
          (rising_factorial(1,k)^2)*(108/t3A)^k for k in range(n)])
        f = F3A^16/t3A
        return f.taylor(x,0,n).coefficients()[n-1][0]  # Robin Visser, Jul 23 2023

Formula

Convolution product of 1/A030197 and A008655^4. - Georg Fischer, Mar 30 2023

Extensions

More terms from Georg Fischer, Mar 30 2023

A341304 Fourier coefficients of a modular form studied by Koike.

Original entry on oeis.org

1, -84, -82, -456, 4869, -2524, -10778, 6888, -11150, 4124, 38304, 81704, -71401, -225288, 99798, -40480, 212016, 37392, -419442, 905352, 141402, -690428, -399258, -682032, -615607, 936600, 1813118, 206968, -346416, -966028, 1887670, -2220264, 883796, 2965868
Offset: 0

Views

Author

N. J. A. Sloane, Feb 13 2021

Keywords

Comments

This is the form (1/t_{4a}) * ( 1-16*i/t_{4a} )*F_{4a}^8. Here, F_{4a} is the hypergeometric function F(1/4, 1/2; 1; 32*i/t_{4a}).

Crossrefs

Programs

  • Sage
    def a(n):
        eta = x^(1/24)*product([(1 - x^k) for k in range(1, 2*n+1)])
        t4a = ((eta/eta(x=x^2))^12 - 64*(eta(x=x^2)/eta)^12) + 16*sqrt(-1)
        F4a = sum([rising_factorial(1/4,k)*rising_factorial(1/2,k)/
            (rising_factorial(1,k)^2)*((32*sqrt(-1))/t4a)^k for k in range(2*n+1)])
        f = (1/t4a)*(1 - 16*sqrt(-1)/t4a)*(F4a^8)
        return f.taylor(x,0,n+1).coefficients()[n][0]  # Robin Visser, Jul 23 2023

Extensions

More terms from Robin Visser, Jul 23 2023
Showing 1-3 of 3 results.