A341991
Multiplicative defect in a natural approximation for the terms of A341617.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 1, 1, 4, 12, 6, 6, 6, 6, 3, 1, 8, 8, 12, 12, 6, 6
Offset: 1
For n = 3 it is known that A341617(3) = 2, so a(3) = 2/(3-1)! = 1.
A054783
(n^2)-th Fibonacci number.
Original entry on oeis.org
0, 1, 3, 34, 987, 75025, 14930352, 7778742049, 10610209857723, 37889062373143906, 354224848179261915075, 8670007398507948658051921, 555565404224292694404015791808, 93202207781383214849429075266681969, 40934782466626840596168752972961528246147
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..69
- Jakub Byszewski, Grzegorz Graff and Thomas Ward, Dold sequences, periodic points, and dynamics, arXiv:2007.04031 [math.DS], 2020-2021; Bull. Lond. Math. Soc. 53 (2021), no. 5, 1263-1298.
- T. Kotek and J. A. Makowsky, Recurrence Relations for Graph Polynomials on Bi-iterative Families of Graphs, arXiv preprint arXiv:1309.4020 [math.CO], 2013.
- Florian Luca and Tom Ward, On (almost) realizable subsequences of linearly recurrent sequences, arXiv:2204.02711 [math.NT], 2022.
- Piotr Miska and Tom Ward, Stirling numbers and periodic points, arXiv:2102.07561 [math.NT], 2021; Acta Arith. 201 (2021), no. 4, 421-435.
- Patrick Moss and Tom Ward, Fibonacci along even powers is (almost) realizable, arXiv:2011.13068 [math.NT], 2020; Fibonacci Quart. 60 (2022), no. 1, 40-47.
Cf.
A341617 shows a similar property for the Stirling numbers of the second kind.
Showing 1-2 of 2 results.
Comments