A341928 a(n) = F(n+4) * F(n+2) + 7 * (-1)^n where F(n) = A000045(n) are the Fibonacci numbers.
3, 31, 58, 175, 435, 1162, 3019, 7927, 20730, 54295, 142123, 372106, 974163, 2550415, 6677050, 17480767, 45765219, 119814922, 313679515, 821223655, 2149991418, 5628750631, 14736260443, 38580030730, 101003831715, 264431464447, 692290561594, 1812440220367
Offset: 1
Examples
For n = 2, a(2) = F(2+4) * F(2+2) + 7 * (-1)^2 = 8 * 3 + 7 = 31.
References
- Burak Muslu, Sayılar ve Bağlantılar, Luna, 2021, p. 51 (in Turkish).
Links
- Index entries for linear recurrences with constant coefficients, signature (2,2,-1).
Programs
-
Mathematica
Table[Fibonacci[n + 4] * Fibonacci[n + 2] + 7 * (-1)^n, {n, 1, 28}] (* Amiram Eldar, Feb 23 2021 *)
-
PARI
a(n) = fibonacci(n+4)*fibonacci(n+2) + 7*(-1)^n; \\ Michel Marcus, Feb 23 2021
Formula
a(n) = F(n+4) * F(n+2) + 7 * (-1)^n.
G.f.: x*(3 + 25*x - 10*x^2)/(1 - 2*x - 2*x^2 + x^3).
Comments