cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A386649 Product of first n central trinomial coefficients (A002426) for n > 0 with a(0) = 1.

Original entry on oeis.org

1, 1, 3, 21, 399, 20349, 2869209, 1127599137, 1248252244659, 3918263795984601, 35080215765450132753, 899912775031092255512709, 66403663756769266442027284401, 14140062564030204365431731967633341, 8713488333644640745496899895218790824407
Offset: 0

Views

Author

Paul D. Hanna, Aug 08 2025

Keywords

Comments

Conjecture: a(n) = A214589(n) - 2 for n >= 1, where A214589(n) is the number of n X n X n triangular 0..2 arrays with every horizontal row having the same average value.

Examples

			The central trinomial coefficients A002426(n) = [x^n] (1 + x + x^2)^n for n >= 0 begin [1, 1, 3, 7, 19, 51, 141, 393, 1107, 3139, ...], where a(n) equals the product of the terms A002426(0) through A002426(n).
		

Crossrefs

Programs

  • Mathematica
    Table[Product[3^k * Hypergeometric2F1[1/2, -k, 1, 4/3], {k, 0, n}], {n, 0, 15}] (* Vaclav Kotesovec, Aug 09 2025 *)
  • PARI
    {a(n) = prod(k=0,n, polcoef((1 + x + x^2)^k, k) )}
    for(n=0,15,print1(a(n),", "))

Formula

a(n) = Product_{k=0..n} A002426(k) for n >= 0.
a(n) ~ c * 3^((n-1)*(n+3)/2) * exp(n/2) / (2^(n - 3/4) * Pi^(n/2 - 1/4) * n^(n/2 + 7/16)), where c = 1.123782729130753266489882099159237662230713685736... - Vaclav Kotesovec, Aug 09 2025

A386650 Product of first n quadrinomial coefficients (A005725) for n > 0 with a(0) = 1.

Original entry on oeis.org

1, 1, 3, 30, 930, 93930, 31560480, 35600221440, 136099646565120, 1776236487321381120, 79580723341459838319360, 12296654209275691297430868480, 6578267322410960919238807125534720, 12223446894741861497849104893155093176320, 79112201841847644246811045518121813092796661760
Offset: 0

Views

Author

Paul D. Hanna, Aug 08 2025

Keywords

Comments

Conjecture: 2*a(n) = A214590(n) - 2 for n >= 1, where A214590(n) is the number of nXnXn triangular 0..3 arrays with every horizontal row having the same average value.

Examples

			The quadrinomial coefficients A005725(n) = [x^n] (1 + x + x^2 + x^3)^n for n >= 0 begin [1, 1, 3, 10, 31, 101, 336, 1128, 3823, ...], where a(n) equals the product of the terms A005725(0) through A005725(n).
		

Crossrefs

Programs

  • Mathematica
    Table[Product[HypergeometricPFQ[{(1-k)/2, -k, -k/2}, {1/2, 1}, -1], {k, 0, n}], {n, 0, 15}] (* Vaclav Kotesovec, Aug 09 2025 *)
  • PARI
    {a(n) = prod(k=0, n, polcoef((1 + x + x^2 + x^3)^k, k) )}
    for(n=0, 15, print1(a(n), ", "))

Formula

a(n) = Product_{k=0..n} A005725(k) for n >= 0.
a(n) ~ c * exp(n/2) * (11 + 217/(6371 + 624*sqrt(78))^(1/3) + (6371 + 624*sqrt(78))^(1/3))^(-1 + n/2 + n^2/2) * ((39 + (4563 - 78*sqrt(78))^(1/3) + (4563 + 78*sqrt(78))^(1/3))/13)^(n/2) / (2^(-11/4 + 2*n + n^2) * 3^((-3 + 2*n + n^2)/2) * Pi^(n/2 + 1/4) * n^((4290 - 1421*78^(2/3)/(804726 - 73709*sqrt(78))^(1/3) - (78*(804726 - 73709*sqrt(78)))^(1/3) + 4056*n)/8112)), where c = 0.77060824350557924602665408964165291884080801923663... - Vaclav Kotesovec, Aug 09 2025

A342178 Product of first n central Delannoy numbers.

Original entry on oeis.org

1, 3, 39, 2457, 788697, 1327377051, 11931792311439, 580350446236081521, 154215943727867706493809, 225550533306461376412704772467, 1826384842574005591817185497927226551, 82272644789290466599017454496002856892236169
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 04 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n<1, 1,
          (3*(2*n-1)*b(n-1) -(n-1)*b(n-2))/n)
        end:
    a:= proc(n) a(n):=`if`(n=0, 1, a(n-1)*b(n)) end:
    seq(a(n), n=0..15);  # Alois P. Heinz, Mar 04 2021
  • Mathematica
    Table[Product[Hypergeometric2F1[-k, k+1, 1, -1], {k, 1, n}], {n, 0, 15}]
    FoldList[Times, 1, Table[Hypergeometric2F1[-n, n + 1, 1, -1], {n, 1, 15}]]
  • PARI
    D(n) = sum(k=0, n, binomial(n, k)*binomial(n+k, k)); \\ A001850
    a(n) = prod(k=0, n, D(k)); \\ Michel Marcus, Mar 04 2021

Formula

a(n) = Product_{k=1..n} A001850(k).
a(n) ~ c * (1 + sqrt(2))^(n*(n+2)) * exp(n/2) / (2^((5*n+1)/4) * Pi^(n/2 + 1/4) * n^((n+1)/2 - 3/(16*sqrt(2)))), where c = 0.9486848745280397752870611535632702994491680306036912732565033220352175749...
Showing 1-3 of 3 results.