cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342186 Triangle read by rows, matrix inverse of A139382.

Original entry on oeis.org

1, -1, 1, 3, -4, 1, -21, 31, -11, 1, 315, -486, 196, -26, 1, -9765, 15381, -6562, 1002, -57, 1, 615195, -978768, 428787, -69688, 4593, -120, 1, -78129765, 124918731, -55434717, 9279163, -652999, 19833, -247, 1
Offset: 1

Views

Author

John Keith, Mar 04 2021

Keywords

Comments

This triangle appears to be the q-analog of A008275 (Stirling numbers of the first kind) for q=2. However, A333142 has a similar definition.
Row sums of unsigned triangle are A006125 with offset 1.
|T(n,k)| is the number of descent free digraphs on [n] containing exactly k source nodes. A descent in a digraph is a pair of vertices s->t such that s>t. A descent free digraph is necessarily acyclic. A source in an acyclic digraph is a node with indegree 0. - Geoffrey Critzer, Mar 05 2025

Examples

			The triangle begins:
           1;
          -1,         1;
           3,        -4,         1;
         -21,        31,       -11,       1;
         315,      -486,       196,     -26,       1;
       -9765,     15381,     -6562,    1002,     -57,     1;
      615195,   -978768,    428787,  -69688,    4593,  -120,    1;
   -78129765, 124918731, -55434717, 9279163, -652999, 19833, -247, 1;
  ...
		

Crossrefs

Cf. A008275, A139382, A333142, A333143, A006125 (row sums).
Columns of unsigned triangle: A005329, A203011, A000295, A203242.

Programs

  • Maple
    A342186 := proc(n, k) if n = 1 and k = 1 then 1 elif k > n or k < 1 then 0 else
    A342186(n-1, k-1) - (2^(n-1) - 1) * A342186(n-1, k) fi end:
    for n from 1 to 8 do seq(A342186(n, k), k = 1..n) od; # Peter Luschny, Jun 28 2022
  • Mathematica
    T[1, 1] := 1; T[n_, k_] := T[n, k] = If[k > n || k < 1, 0, T[n - 1, k - 1] - (2^(n - 1) - 1)*T[n - 1, k]]; Table[T[n, k], {n, 1, 8}, {k, 1, n}] (* after G. C. Greubel's program for A139382 *)
  • PARI
    mat(nn) = my(m = matrix(nn, nn)); for (n=1, nn, for(k=1, nn, m[n,k] = if (n==1, if (k==1, 1, 0), if (k==1, 1, (2^k-1)*m[n-1, k] + m[n-1, k-1])););); m; \\ A139382
    tabl(nn) = 1/mat(nn); \\ Michel Marcus, Mar 18 2021

Formula

T(n,k) = T(n-1,k-1) - (2^(n-1)-1) * T(n-1,k), n, k >= 1, T(1, 1) = 1, T(n, 0) = 0.
For unsigned triangle, T(n, 1) = A005329(n-1); T(n, 2) = A203011(n-1); T(n, n-1) = A000295(n+1); T(n, n-2) = A203242(n-1).
T(n,k) = Sum_{j=k..n} (-1)^(n-j)*2^binomial(n-j,2)*qBinomial(n,j,2)*binomial(j,k), where qBinomial(n,k,2) is A022166(n,k). - Fabian Pereyra, Feb 08 2024