cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A374141 a(n) is the smallest number which can be represented as the sum of two distinct nonzero hexagonal numbers in exactly n ways, or -1 if no such number exists.

Original entry on oeis.org

7, 384, 4995, 51106, 204805, 483031, 2443431, 4674256, 10476781, 17272531, 25600656, 60765331, 90406956, 206602126, 332808531, 481676406, 303826656, 435211156, 789949306, 1406495106, 2260173906, 2704798281, 3220562556, 4435869181, 5165053156, 5309576106, 9818788281
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 28 2024

Keywords

Examples

			a(2) = 384 = 6 + 378 = 153 + 231.
		

Crossrefs

Programs

  • Python
    # see linked program

Extensions

a(9)-a(27) from Michael S. Branicky, Jun 29 2024

A374142 a(n) is the smallest number which can be represented as the sum of two distinct nonzero heptagonal numbers in exactly n ways, or -1 if no such number exists.

Original entry on oeis.org

8, 617, 8726, 255575, 1339801, 2419165, 9402323, 25764500, 35486953, 144568133, 385495261, 735503569, 638279039, 1183071664, 1571634527, 4449717748, 3584182298, 3871587494, 5693954599, 27084640649, 24205505111, 32489035067, 31973745058, 38935021406, 47570693867, 44749048300, 53075499329
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 28 2024

Keywords

Examples

			a(2) = 617 = 1 + 616 = 148 + 469.
		

Crossrefs

Programs

  • Python
    # see linked program

Extensions

a(8)-a(27) from Michael S. Branicky, Jun 29 2024

A374143 a(n) is the smallest number which can be represented as the sum of two distinct nonzero octagonal numbers in exactly n ways, or -1 if no such number exists.

Original entry on oeis.org

9, 1053, 12641, 68141, 365641, 953181, 2830641, 6232341, 13969041, 23211261, 104733741, 84994021, 175873641, 159851141, 538547641, 602713041, 810204416, 1019740041, 1053265741, 1972957241, 3339356041, 5914492241, 6886737541, 6388758241, 8902368041, 7858982841, 4942246941, 18439299341, 26639916441
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 28 2024

Keywords

Examples

			a(2) = 1053 = 8 + 1045 = 408 + 645.
		

Crossrefs

Programs

  • Python
    # see linked program

Extensions

a(9)-a(29) from Michael S. Branicky, Jun 29 2024

A374144 a(n) is the smallest number which can be represented as the sum of two distinct nonzero n-gonal numbers in exactly n ways, or -1 if no such number exists.

Original entry on oeis.org

81, 1105, 205427, 483031, 9402323, 6232341, 79324200, 768459127, 2265692766, 2413112833, 6737406626, 150437989675, 45319359337, 15140186701
Offset: 3

Views

Author

Ilya Gutkovskiy, Jun 28 2024

Keywords

Examples

			a(3) = 81 = 3 + 78 = 15 + 66 = 36 + 45.
		

Crossrefs

Programs

  • Python
    # see linked program

Extensions

a(9)-a(16) from Michael S. Branicky, Jun 30 2024

A350288 a(n) is the smallest number which can be represented as the sum of n distinct nonzero triangular numbers in exactly n ways, or 0 if no such number exists.

Original entry on oeis.org

1, 16, 37, 64, 83, 128, 177, 204, 270, 352, 430, 533, 632, 764, 893, 1102, 1256, 1443, 1630, 1855, 2141, 2384, 2699, 3053, 3378, 3753, 4176, 4620, 5068, 5570, 6107, 6654, 7253, 7904, 8526, 9241, 9975, 10699, 11533, 12401, 13301, 14189, 15179, 16233, 17286, 18412
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 23 2021

Keywords

Examples

			For n = 2: 16 = 1 + 15 = 6 + 10.
For n = 3: 37 = 1 + 15 + 21 = 3 + 6 + 28 = 6 + 10 + 21.
		

Crossrefs

Extensions

More terms from Jinyuan Wang, Dec 26 2021

A374806 a(n) is the smallest number which can be represented as the sum of 3 distinct nonzero triangular numbers in exactly n ways, or -1 if no such number exists.

Original entry on oeis.org

10, 19, 37, 52, 82, 109, 136, 241, 226, 217, 247, 364, 427, 457, 541, 532, 577, 637, 961, 721, 787, 1066, 1102, 1381, 1267, 1564, 1192, 1396, 1816, 1501, 1612, 1927, 1942, 2242, 1792, 2842, 2587, 2557, 2422, 2866, 2887, 3181, 3271, 3412, 4126
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 20 2024

Keywords

Examples

			a(3) = 37 = 1 + 15 + 21 = 3 + 6 + 28 = 6 + 10 + 21.
		

Crossrefs

A374807 a(n) is the smallest number which can be represented as the sum of 4 distinct nonzero triangular numbers in exactly n ways, or -1 if no such number exists.

Original entry on oeis.org

20, 38, 47, 64, 73, 92, 97, 110, 127, 115, 130, 164, 185, 172, 208, 157, 199, 235, 247, 232, 220, 272, 277, 304, 280, 361, 262, 307, 319, 391, 322, 292, 495, 415, 337, 367, 370, 382, 478, 482, 412, 409, 445, 430, 467, 500, 427, 532, 493
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 20 2024

Keywords

Examples

			a(3) = 47 = 1 + 3 + 15 + 28 = 1 + 10 + 15 + 21 = 3 + 6 + 10 + 28.
		

Crossrefs

Showing 1-7 of 7 results.