A373778 Triangle T(n, k) read by rows: Maximum number of patterns of length k in a permutation of length n.
1, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 6, 5, 1, 1, 2, 6, 12, 6, 1, 1, 2, 6, 19, 21, 7, 1, 1, 2, 6, 23, 41, 28, 8, 1, 1, 2, 6, 24, 71, 76, 36, 9, 1, 1, 2, 6, 24, 94, 156, 114, 45, 10, 1, 1, 2, 6, 24, 112, 273, 291, 162, 55, 11, 1, 1, 2, 6, 24, 119, 408, 614, 477, 220, 66, 12, 1
Offset: 1
Examples
The triangle begins: n| k: 1| 2| 3| 4| 5| 6| 7 ============================= [1] 1 [2] 1, 1 [3] 1, 2, 1 [4] 1, 2, 4, 1 [5] 1, 2, 6, 5, 1 [6] 1, 2, 6, 12, 6, 1 [7] 1, 2, 6, 19, 21, 7, 1 ... T(3, 2) = 2 because we have: permutations subsequences patterns number of patterns {1,2,3} : {1,2},{1,3},{2,3} : [1,2],[1,2],[1,2] : 1. {1,3,2} : {1,3},{1,2},{3,2} : [1,2],[1,2],[2,1] : 2. {2,1,3} : {2,1},{2,3},{1,3} : [2,1],[1,2],[1,2] : 2. {2,3,1} : {2,3},{2,1},{3,1} : [1,2],[2,1],[2,1] : 2. {3,1,2} : {3,1},{3,2},{1,2} : [2,1],[2,1],[1,2] : 2. {3,2,1} : {3,2},{3,1},{2,1} : [2,1],[2,1],[2,1] : 1. A pattern is a set of indices that may sort a selected subsequence into an increasing sequence.
Programs
-
PARI
row(n) = my(rowp = vector(n!, i, numtoperm(n, i)), v = vector(n)); for (j=1, n, for (i=1, #rowp, my(r = rowp[i], list = List()); forsubset([n,j], s, my(ss = Vec(s)); vp = vector(j, ik, r[ss[ik]]); vs = Vec(vecsort(vp,,1)); listput(list, vs);); v[j] = max(v[j], #Set(list)););); v; \\ Michel Marcus, Jun 20 2024
Formula
Extensions
a(41)-a(59) from Michel Marcus, Jun 20 2024
a(60)-a(78) from Jinyuan Wang, Jul 23 2025
Comments