A284411
Least prime p such that more than half of all integers are divisible by n distinct primes not greater than p.
Original entry on oeis.org
3, 37, 42719, 5737850066077
Offset: 1
Exactly half of the integers are divisible by 2, so a(1)>2. Two-thirds of all integers are divisible by 2 or 3, so a(1) = 3.
- Jean-Marie De Koninck, Those Fascinating Numbers, American Mathematical Society, 2009, pp. 13, 216 and 368.
- Jean-Marie De Koninck and Gérald Tenenbaum, Sur la loi de répartition du k-ième facteur premier d'un entier, Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 133, No. 2 (2002), pp. 191-204.
- Gérald Tenenbaum, Some of Erdős' unconventional problems in number theory, thirty-four years later, Erdős Centennial, Janos Bolyai Math. Soc., 2013, 651-681. HAL Id: hal-01281530.
A342479
a(n) is the numerator of the asymptotic density of numbers whose second smallest prime divisor (A119288) is prime(n).
Original entry on oeis.org
0, 1, 1, 1, 46, 44, 288, 33216, 613248, 151296, 391584768, 2383570944, 86830424064, 206470840320, 21270238986240, 987259950858240, 1262040231444480, 3022250536693923840, 3884253754215628800, 1102040800033347993600, 1892288242221318144000, 5616902226049109065728000
Offset: 1
The fractions begin with 0, 1/6, 1/10, 1/15, 46/1155, 44/1365, 288/12155, 33216/1616615, 613248/37182145, 151296/11849255, 391584768/33426748355, ...
a(1) = 0 since there are no numbers whose second smallest prime divisor is prime(1) = 2.
a(2)/A342480(2) = 1/6 since the numbers whose second smallest prime divisor is prime(2) = 3 are the positive multiples of 6.
a(3)/A342480(3) = 1/10 since the numbers whose second smallest prime divisor is prime(3) = 5 are the numbers congruent to {10, 15, 20} (mod 30) whose density is 3/30 = 1/10.
- József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 4, pp. 337-341.
-
f[n_] := Module[{p = Prime[n], q}, q = Select[Range[p - 1], PrimeQ]; Plus @@ (1/(q - 1))*Times @@ ((q - 1)/q)/p]; Numerator @ Array[f, 30]
A378720
a(n) is the numerator of the asymptotic density of numbers whose third smallest prime divisor is prime(n).
Original entry on oeis.org
0, 0, 1, 1, 4, 326, 628, 992, 98304, 125568, 733440, 281163264, 386427322368, 3178249003008, 12454223855616, 6450728943845376, 342348724735967232, 20218431581110665216, 39814891891080560640, 82739188294287768944640, 15336676441718784000, 61298453882755419734016000
Offset: 1
The fractions begin with 0/1, 0/1, 1/30, 1/30, 4/165, 326/15015, 628/36465, 992/62985, 98304/7436429, 125568/11849255, ..., .
a(1) = a(2) = 0 since there are no numbers whose third prime divisor is 2 or 3.
a(3)/A378721(3) = 1/30 since the numbers whose third prime divisor is 5 are the numbers that are divisible by 2, 3 and 5, and their density if (1/2)*(1/3)*(1/5) = 1/30.
a(4)/A378721(4) = 1/30 since the numbers whose third prime divisor is 7 are the union of the numbers that are divisible by 2, 3 and 7 and not by 5 whose density is (1/2)*(1/3)*(1-1/5)*(1/7) = 2/105, the numbers that are divisible by 2, 5 and 7 and not by 3 whose density is (1/2)*(1-1/3)*(1/5)*(1/7) = 1/105, and the numbers that are divisible by 3, 5 and 7 and not by 2 whose density is (1-1/2)*(1/3)*(1/5)*(1/7) = 1/210, and 2/105 + 1/105 + 1/210 = 1/30.
- József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 4, pp. 337-341.
- Amiram Eldar, Table of n, a(n) for n = 1..365
- Jean-Marie de Koninck and Gérald Tenenbaum, Sur la loi de répartition du k-ième facteur premier d'un entier, Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 133, No. 2 (2002), pp. 191-204.
- Paul Erdős and Gérald Tenenbaum, Sur les densités de certaines suites d'entiers, Proc. London Math. Soc. (3), Vol. 59, No. 3 (1989), pp. 417-438; alternative link.
-
a[n_] := Block[{p, q = Prime@ Range@ n}, p = Fold[Times, 1, q]; q = Most@ q; Plus @@ Times @@@ Subsets[q -1, {n -3}]/p]; a[1] = 0; Numerator@ Array[a, 22]
-
a(n) = {my(v = primes(n), q = vecextract(apply(x -> x-1, v),"^-1"), p = vecprod(v), prd = vecprod(q)/p, sm = 0, sb); forsubset([#q, 2], s, sb = vecextract(q, s); sm += 1/vecprod(sb)); numerator(prd * sm);}
A378721
a(n) is the denominator of the asymptotic density of numbers whose third smallest prime divisor is prime(n).
Original entry on oeis.org
1, 1, 30, 30, 165, 15015, 36465, 62985, 7436429, 11849255, 73465381, 33426748355, 50708377254535, 436092044389001, 1863302371480277, 1086305282573001491, 64092011671807087969, 3909612711980232366109, 8449808119441147371913, 18598027670889965365580513, 3543193335582015099413
Offset: 1
-
a[n_] := Block[{p, q = Prime@ Range@ n}, p = Fold[Times, 1, q]; q = Most@ q; Plus @@ Times @@@ Subsets[q -1, {n -3}]/p]; a[1] = 0; Denominator@ Array[a, 21]
-
a(n) = {my(v = primes(n), q = vecextract(apply(x -> x-1, v),"^-1"), p = vecprod(v), prd = vecprod(q)/p, sm = 0, sb); forsubset([#q, 2], s, sb = vecextract(q, s); sm += 1/vecprod(sb)); denominator(prd * sm);}
A356094
a(n) = denominator((prime(n)-1)/prime(n)#), where prime(n)# = A002110(n) is the n-th primorial.
Original entry on oeis.org
2, 3, 15, 35, 231, 5005, 255255, 1616615, 10140585, 462120945, 6685349671, 1236789689135, 30425026352721, 311494317420715, 13367169186706335, 1253429172199617105, 33151040519900217915, 3909612711980232366109, 119065478046670712967865, 7970583287524270870963077
Offset: 1
-
primorial[n_] := Product[Prime[i], {i, 1, n}]; Denominator[Table[(Prime[i] - 1)/primorial[i], {i, 1, 20}]]
-
a(n) = denominator((prime(n)-1)/factorback(primes(n))); \\ Michel Marcus, Jul 26 2022
-
from math import gcd
from sympy import primorial, prime
def A356094(n): return (p:=primorial(n))//gcd(p,prime(n)-1) # Chai Wah Wu, Jul 26 2022
Showing 1-5 of 5 results.
Comments