A342710 Solutions x to the Pell-Fermat equation x^2 - 5*y^2 = 4.
3, 18, 123, 843, 5778, 39603, 271443, 1860498, 12752043, 87403803, 599074578, 4106118243, 28143753123, 192900153618, 1322157322203, 9062201101803, 62113250390418, 425730551631123, 2918000611027443, 20000273725560978, 137083915467899403, 939587134549734843
Offset: 0
Examples
a(1)^2 - 5 * A033890(1)^2 = 18^2 - 5 * 8^2 = 4.
Links
- Index entries for linear recurrences with constant coefficients, signature (7,-1).
Crossrefs
a(n) = 3*A049685(n). - Hugo Pfoertner, Mar 19 2021
Programs
-
Mathematica
LinearRecurrence[{7, -1}, {3, 18}, 20] (* Amiram Eldar, Mar 19 2021 *) Table[2 ChebyshevT[2 n + 1, 3/2], {n, 0, 20}] (* Eric W. Weisstein, Sep 02 2025 *) Table[2 Cos[(2 n + 1) ArcCos[3/2]], {n, 0, 20}] // FunctionExpand (* Eric W. Weisstein, Sep 02 2025 *)
Formula
a(n) = 7*a(n-1) - a(n-2).
a(n) = 2*T(2*n+1, 3/2), where T(n,x) denotes the n-th Chebyshev polynomial of the first kind. - Peter Bala, Jul 02 2022
From Stefano Spezia, Apr 14 2025: (Start)
G.f.: 3*(1 - x)/(1 - 7*x + x^2).
E.g.f.: exp(7*x/2)*(3*cosh(3*sqrt(5)*x/2) + sqrt(5)*sinh(3*sqrt(5)*x/2)). (End)
a(n) = 2*cos((2*n+1)*arccos(3/2)). - Eric W. Weisstein, Sep 02 2025
Comments