cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343010 Integers k for which there exist three consecutive Fibonacci numbers a, b, and c such that a*b*c = k*(a+b+c).

Original entry on oeis.org

0, 1, 3, 20, 52, 357, 935, 6408, 16776, 114985, 301035, 2063324, 5401852, 37024845, 96932303, 664383888, 1739379600, 11921885137, 31211900499, 213929548580, 560074829380, 3838809989301, 10050135028343, 68884650258840, 180342355680792, 1236084894669817
Offset: 1

Views

Author

Amrit Awasthi, Apr 02 2021

Keywords

Comments

F(n-1)*F(n)*F(n+1) = k(n)*(F(n-1)+F(n)+F(n+1)). This implies that k(n)=(F(n-1)*F(n))/2. Now k(n) will be an integer only when n is of the form 3*m or 3*m+1. Therefore we get k = (F(3*m+-1)*F(3*m))/2.

Examples

			0 is a term because F(0)*F(1)*F(2)/(F(0)+F(1)+F(2)) is 0*1*1/(0+1+1) = 0.
1 is a term because F(2)*F(3)*F(4)/(F(2)+F(3)+F(4)) is 1*2*3/(1+2+3) = 1.
3 is a term because F(3)*F(4)*F(5)/(F(3)+F(4)+F(5)) is 2*3*5/(2+3+5) = 3.
		

Crossrefs

Cf. A000045 (Fibonacci numbers), 1/2 times the even terms of sequence A001654.
Cf. A065563 (F(n-1)*F(n)*F(n+1)), A078642 (F(n-1)+F(n)+F(n+1)).

Programs

  • Maple
    F:= n-> (<<0|1>, <1|1>>^n)[1, 2]:
    a:= n-> (k-> mul(F(k+j), j=0..2)/add(F(k+j), j=0..2))(floor(3*n/2)-1):
    seq(a(n), n=1..30);  # Alois P. Heinz, Apr 02 2021
  • Mathematica
    Select[Table[(Fibonacci[k-1]*Fibonacci[k]*Fibonacci[k+1])/(Fibonacci[k-1]+Fibonacci[k]+Fibonacci[k+1]),{k,37}],IntegerQ] (* or *)
    b[k_]:=Fibonacci[3k-1]*Fibonacci[3k]/2; c[k_]:=Fibonacci[3k+1]*Fibonacci[3k]/2; Union[Table[b[k],{k,0,12}],Table[c[k],{k,0,12}]] (* Stefano Spezia, Apr 03 2021 *)
  • PARI
    r(m)={fibonacci(m)*fibonacci(m-1)*fibonacci(m+1)/(fibonacci(m)+fibonacci(m-1)+fibonacci(m+1))}
    { for(m=2, 30, my(t=r(m)); if(!frac(t), print1(t, ", ")))} \\ Andrew Howroyd, Apr 02 2021

Formula

Union of the two sequences b(k) and c(k) defined respectively as F(3*k-1)*F(3*k)/2 and F(3*k+1)*F(3*k)/2.
G.f.: x^2*(1 + 3*x + 3*x^2 + x^3)/(1 - 17*x^2 - 17*x^4 + x^6). - Stefano Spezia, Apr 03 2021