cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343020 a(n) is the smallest prime p such that tau(p+1) = 2^n.

Original entry on oeis.org

2, 5, 23, 167, 839, 7559, 128519, 1081079, 20540519, 397837439, 8031343319, 188972783999, 3212537327999, 125568306863999, 2888071057871999, 190487121512687999, 4381203794791823999, 215961289494494543999, 13283916764437951631999, 540119185025730854543999, 26465840066260811872655999, 1356699703068812438127791999
Offset: 1

Views

Author

Jaroslav Krizek, Apr 02 2021

Keywords

Comments

tau(m) = the number of divisors of m (A000005).
Sequences of primes p such that tau(p+1) = 2^n for 2 <= n <= 5:
n = 2: 5, 7, 13, 37, 61, 73, 157, 193, 277, 313, 397, 421, ...
n = 3: 23, 29, 41, 53, 101, 103, 109, 113, 127, 137, 151, ...
n = 4: 167, 263, 269, 311, 383, 389, 439, 461, 509, 569, ...
n = 5: 839, 1319, 1511, 1559, 1847, 1889, 2039, 2309, 2687, ...
Conjecture: a(n) is also the smallest number m such that tau(m+1) = tau(m)^n.

Examples

			a(4) = 167 because 167 is the smallest prime p such that tau(p+1) = 16 = 2^4.
		

Crossrefs

Programs

  • Magma
    Ax:=func; [Ax(n): n in [1..7]]
    
  • Mathematica
    Do[p = 1; While[DivisorSigma[0, Prime[p] + 1] != 2^n, p++]; Print[n, " ", Prime[p]], {n, 1, 9}] (* Vaclav Kotesovec, Apr 03 2021 *)
  • PARI
    a(n) = my(t=2^n); forprime(p=2, oo, if(numdiv(p+1)==t, return(p))); \\ Jinyuan Wang, Apr 02 2021
    
  • Python
    from sympy import isprime,nextprime
    primes=[2]
    def solve(v,k,i,j):
        global record,stack,primes
        if k==0:
            if isprime(v-1):
                record=v
            return True
        sizeok=False
        cnt=True
        while cnt:
            if i>=len(primes):
                primes.append(nextprime(primes[-1]))
            if jBert Dobbelaere, Apr 11 2021

Extensions

a(11) from Jinyuan Wang, Apr 02 2021
More terms from David A. Corneth, Apr 09 2021