cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A343018 a(n) is the smallest number m such that tau(m+1) = tau(m) + n.

Original entry on oeis.org

2, 1, 5, 49, 11, 35, 23, 399, 47, 1849, 59, 143, 119, 1599, 167, 575, 179, 1295, 239, 4355, 629, 2303, 359, 899, 959, 9215, 1007, 39999, 719, 20735, 839, 5183, 1799, 46655, 1259, 36863, 1679, 7055, 3023, 986049, 2879, 3599, 6479, 82943, 2519, 193599, 3359, 207935
Offset: 0

Views

Author

Jaroslav Krizek, Apr 02 2021

Keywords

Comments

tau(m) = the number of divisors of m (A000005).
Sequences of numbers m such that tau(m+1) = tau(m) + n for 0 <= n <= 5:
n = 0: 2, 14, 21, 26, 33, 34, 38, 44, 57, 75, 85, 86, 93, ... (A005237).
n = 1: 1, 3, 9, 15, 25, 63, 121, 195, 255, 361, 483, 729, ... (A055927).
n = 2: 5, 7, 13, 27, 37, 51, 61, 62, 73, 74, 91, 115, 123, ... (A230115).
n = 3: 49, 99, 1023, 1681, 1935, 2499, 8649, 9603, 20449, ... (A230653).
n = 4: 11, 17, 19, 31, 39, 43, 55, 65, 67, 69, 77, 87, 97, ... (A230654).
n = 5: 35, 169, 289, 529, 961, 1369, 2809, 3135, 4489, ... (A228453).

Examples

			For n = 3; a(3) = 49 because 49 is the smallest number such that tau(50) = 6 = tau(49) + 3 = 3 + 3.
		

Crossrefs

Programs

  • Magma
    Ax:=func; [Ax(n): n in [0..50]];
    
  • Maple
    N:= 60: # for a(0)..a(N)
    V:= Array(0..N): count:=0: t:= numtheory:-tau(1):
    for m from 1 while count < N+1 do
      s:= numtheory:-tau(m+1); v:= s - t;
      if v >= 0 and v <= N and V[v] = 0 then count:= count+1; V[v]:= m; fi;
      t:= s;
    od:
    convert(V, list); # Robert Israel, Jan 03 2025
  • Mathematica
    d = Differences @ Table[DivisorSigma[0, n], {n, 1, 10^6}]; a[n_] := If[(p = Position[d, n]) != {}, p[[1, 1]], 0]; s = {}; n = 0; While[(a1 = a[n]) > 0, AppendTo[s, a1]; n++]; s (* Amiram Eldar, Apr 03 2021 *)
  • PARI
    a(n) = my(m=1); while (numdiv(m+1) != numdiv(m) + n, m++); m; \\ Michel Marcus, Apr 03 2021
    
  • Python
    from itertools import count, pairwise
    from sympy import divisor_count
    def A343018(n): return next(m+1 for m, t in enumerate(pairwise(map(divisor_count,count(1)))) if t[1] == t[0]+n) # Chai Wah Wu, Jul 25 2022

Formula

a(n) = A086550(n) - 1.

A350132 a(n) is the smallest number m such that tau(m-1) = tau(m+1) = tau(m)^n, where tau(m) is the number of divisors of m (A000005).

Original entry on oeis.org

34, 7, 41, 919, 18089, 446081, 27033161, 663929729, 74335064959, 6132592231039
Offset: 1

Views

Author

Jaroslav Krizek, Dec 15 2021

Keywords

Comments

Triples of [tau(a(n) - 1), tau(a(n)), tau(a(n) + 1)] = [tau(a(n))^n, tau(a(n)), tau(a(n))^n]: [4, 4, 4], [4, 2, 4], [8, 2, 8], [16, 2, 16], [32, 2, 32], [64, 2, 64], [128, 2, 128], ...
Conjecture: a(n) is prime for all n >= 2, i.e., the sequence {a(n)} without the first term is the sequence of smallest primes p such that tau(p-1) = tau(p+1) = 2^n for n >= 2.
a(10) <= 6132592231039. - Jon E. Schoenfield, Jan 19 2022
From David A. Corneth, Jan 21 2022: (Start)
a(11) <= 864808145605249.
a(12) <= 246846832951283839.
a(13) <= 14552217960448488319. (End)

Examples

			34 is the 1st term of A169834, so a(1) = 34.
		

Crossrefs

Programs

  • Magma
    Ax:=func; [Ax(n): n in [1..6]];
    
  • PARI
    isok(m, n) = my(nd1=numdiv(m-1)); (nd1 == numdiv(m)^n) && (nd1 == numdiv(m+1));
    a(n) = {my(m=2); while (!isok(m, n), m++); m;} \\ Michel Marcus, Dec 16 2021

Extensions

a(8) from Jon E. Schoenfield and David A. Corneth, Dec 15 2021
a(9) from David A. Corneth and Martin Ehrenstein, Jan 14 2022
a(10) verified by Martin Ehrenstein, Jan 21 2022

A343087 a(n) is the smallest prime p such that tau(p-1) = 2^n.

Original entry on oeis.org

3, 7, 31, 211, 1321, 7561, 120121, 1580041, 24864841, 328648321, 7558911361, 162023621761, 5022732274561, 93163582512001, 4083134943888001, 151075992923856001, 5236072827921936001, 188391763176048432001, 8854412869274276304001, 469283882071536644112001, 29844457947060064452144001, 1917963226026370264485744001
Offset: 1

Views

Author

Jaroslav Krizek, Apr 04 2021 (following a suggestion of Vaclav Kotesovec)

Keywords

Comments

tau(m) = the number of divisors of m (A000005).
Sequences of primes p such that tau(p-1) = 2^n for 2 <= n <= 5:
n = 2: 7, 11, 23, 47, 59, 83, 107, 167, 179, ... (A005385(k) for k >= 2).
n = 3: 31, 41, 43, 67, 71, 79, 89, 103, 131, 137, 139, 191, ...
n = 4: 211, 271, 281, 313, 331, 379, 409, 457, 463, 521, 547, ...
n = 5: 1321, 2281, 2311, 2377, 2689, 2731, 2857, 2971, 3001, ...
Conjecture: a(n) is also the smallest number m such that tau(m-1) = tau(m)^n.

Examples

			For n = 4; a(4) = 211 because 211 is the smallest prime p such that tau(p - 1) = 2^4; tau(210) = 16.
		

Crossrefs

Programs

  • Magma
    Ax:=func; [Ax(n): n in [1..9]]
    
  • Python
    from sympy import isprime,nextprime
    primes=[2]
    def solve(v,k,i,j):
        global record,stack,primes
        if k==0:
            if isprime(v+1):
                record=v
            return
        while True:
            if i>=len(primes):
                primes.append(nextprime(primes[-1]))
            if jBert Dobbelaere, Apr 11 2021

Extensions

a(11) from Vaclav Kotesovec, Apr 05 2021
More terms from Bert Dobbelaere, Apr 11 2021
Showing 1-3 of 3 results.