cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A343445 Coefficients of the series S(p, q) for which (-sqrt(p))*S converges to the largest real root of x^3 - p*x + q for 0 < p and 0 < q < 2*(p/3)^(3/2).

Original entry on oeis.org

-1, 1, 3, 24, 315, 5760, 135135, 3870720, 130945815, 5109350400, 225881530875, 11158821273600, 609202488769875, 36422392637030400, 2366751668870964375, 166086110424858624000, 12517749576658530579375, 1008474862499741564928000, 86485131825133787772901875
Offset: 0

Views

Author

Dixon J. Jones, Apr 15 2021

Keywords

Comments

Based on formulas for series solutions of trinomials given in Eagle article.

Crossrefs

Programs

  • Maple
    a := proc(n) option remember; if n = 1 then 1 elif n = 2 then 3 else 3*(3*n - 5)*(3*n - 7)*a(n-2) fi; end:
    seq(a(n), n = 1..20); # Peter Bala, Jul 23 2024
  • Mathematica
    Clear[a]; a = Table[2^(n - 1)Gamma[(3*n - 1)/2]/Gamma[(n + 1)/2], {n, 0, 20}] (* or equivalently *)
    Clear[a]; a = Table[2^(n - 1)Pochhammer[(n + 1)/2, n - 1], {n, 0, 20}]

Formula

a(n) = 2^(n - 1) * Gamma((3*n - 1)/2) / Gamma((n + 1)/2).
a(n) = 2^(n - 1) * ((n + 1)/2)_(n - 1), where (x)_k is the Pochhammer symbol for Gamma(x + k) / Gamma(k).
a(n) = 3*A113551(n-1) for n>=2. - Hugo Pfoertner, Apr 16 2021
E.g.f.: (sqrt(3)*sin(arcsin(3*sqrt(3)*x)/3) - 3*cos(arcsin(3*sqrt(3)*x)/3))/3. - Stefano Spezia, May 23 2021
a(n) = 3*(3*n - 5)*(3*n - 7)*a(n-2) with a(0) = -1, a(1) = 1 and a(2) = 3. - Peter Bala, Jul 23 2024
a(n) ~ 3^(3*n/2-1) * n^(n-1) / exp(n). - Amiram Eldar, Sep 02 2025

A384242 a(n) = Product_{k=0..n-1} (4*n-5*k).

Original entry on oeis.org

1, 4, 24, 168, 1056, 0, -229824, -7233408, -162860544, -2573835264, 0, 2333140153344, 131053381595136, 4948323499671552, 124773727026364416, 0, -256422032696998232064, -20710128948965418074112, -1096668276542495972130816, -37948699305215165278715904, 0
Offset: 0

Views

Author

Seiichi Manyama, May 22 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = prod(k=0, n-1, 4*n-5*k);
    
  • Sage
    def a(n): return 5^n*falling_factorial(4*n/5, n)

Formula

a(n) = 5^n * FallingFactorial(4*n/5,n).
a(n) = n! * [x^n] (1 + 5*x)^(4*n/5).
a(n) = 4 * (-1)^(n-1) * A383997(n) for n > 0.
a(5*n) = 0 for n > 0.
D-finite with recurrence a(n) +8*n*(4*n-15)*(4*n-5)*(n-5)*(2*n-5)*a(n-5)=0. - R. J. Mathar, May 26 2025
Showing 1-2 of 2 results.