cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A343548 a(n) = Sum_{d|n} binomial(d+n-1,n).

Original entry on oeis.org

1, 4, 11, 41, 127, 498, 1717, 6610, 24366, 93391, 352717, 1358826, 5200301, 20097076, 77562773, 300786339, 1166803111, 4539163784, 17672631901, 68933291834, 269129233484, 1052113994124, 4116715363801, 16124221819056, 63205303242628, 247961973949228, 973469736360283
Offset: 1

Views

Author

Seiichi Manyama, Apr 19 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, Binomial[# + n - 1, n] &]; Array[a, 30] (* Amiram Eldar, Apr 25 2021 *)
  • PARI
    a(n) = sumdiv(n, d, binomial(d+n-1, n));

Formula

a(n) = [x^n] Sum_{k>=1} x^k/(1 - x^k)^(n+1).
a(n) = [x^n] Sum_{k>=1} binomial(k+n-1,n) * x^k/(1 - x^k).

A343565 a(n) = |{(x_1, x_2, ... , x_n) : 1 <= x_1 <= x_2 <= ... <= x_n <= n, gcd(x_1, x_2, ... , x_n, n) = 1}|.

Original entry on oeis.org

1, 2, 9, 30, 125, 428, 1715, 6270, 24255, 91367, 352715, 1345448, 5200299, 20019526, 77554749, 300295038, 1166803109, 4535971916, 17672631899, 68913247655, 269128640958, 1051984969598, 4116715363799, 16123381989000, 63205303195125, 247956558998878, 973469689288236
Offset: 1

Views

Author

Seiichi Manyama, Apr 20 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, MoebiusMu[n/#] * Binomial[# + n - 1, n] &]; Array[a, 30] (* Amiram Eldar, Apr 25 2021 *)
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*binomial(d+n-1, n));

Formula

a(n) = Sum_{d|n} mu(n/d) * binomial(d+n-1, n).
a(n) = [x^n] Sum_{k>=1} mu(k) * x^k/(1 - x^k)^(n+1).

A343568 a(n) = Sum_{d|n} (n/d)^(n/d) * binomial(d+n-1,n).

Original entry on oeis.org

1, 7, 37, 311, 3251, 47419, 825259, 16786615, 387446284, 10000130757, 285312023327, 8916102467195, 302875111792553, 11112006858124501, 437893890458947787, 18446744074296533175, 827240261887503567287, 39346408075308452154628
Offset: 1

Views

Author

Seiichi Manyama, Apr 20 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, (n/#)^(n/#) * Binomial[# + n - 1, n] &]; Array[a, 20] (* Amiram Eldar, Apr 25 2021 *)
  • PARI
    a(n) = sumdiv(n, d, (n/d)^(n/d)*binomial(d+n-1, n));

Formula

a(n) = [x^n] Sum_{k>=1} (k * x)^k/(1 - x^k)^(n+1).

A363660 a(n) = Sum_{d|n} binomial(d+n,n).

Original entry on oeis.org

2, 9, 24, 90, 258, 1043, 3440, 13419, 48850, 187836, 705444, 2725099, 10400614, 40233015, 155133856, 601820876, 2333606238, 9079958260, 35345263820, 137876637843, 538259060526, 2104292500739, 8233430727624, 32248866496625, 126410606580284
Offset: 1

Views

Author

Seiichi Manyama, Jun 14 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, Binomial[# + n, n] &]; Array[a, 25] (* Amiram Eldar, Jul 17 2023 *)
  • PARI
    a(n) = sumdiv(n, d, binomial(d+n, n));

Formula

a(n) = [x^n] Sum_{k>0} (1/(1 - x^k)^(n+1) - 1).
a(n) = [x^n] Sum_{k>0} binomial(k+n,n) * x^k/(1 - x^k).

A363668 a(n) = Sum_{d|n} (n/d)^d * binomial(d+n-1,d).

Original entry on oeis.org

1, 7, 19, 91, 151, 1135, 1765, 12355, 28846, 157917, 352837, 2280955, 5200469, 29986201, 80469589, 427061795, 1166803399, 6211188028, 17672632261, 89483074521, 271071666724, 1316291647997, 4116715364329, 19595444140771, 63205674328876, 292318539358879
Offset: 1

Views

Author

Seiichi Manyama, Jun 14 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, (n/#)^# * Binomial[# + n - 1, #] &]; Array[a, 30] (* Amiram Eldar, Jul 12 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (n/d)^d*binomial(d+n-1, d));

Formula

a(n) = [x^n] Sum_{k>0} (1/(1 - k*x^k)^n - 1).

A363669 a(n) = Sum_{d|n} (n/d)^n * binomial(d+n-1,d).

Original entry on oeis.org

1, 11, 91, 1219, 15751, 299291, 5766517, 136667939, 3490056406, 100539251801, 3138428729437, 107169878769043, 3937376390899589, 155639310270607349, 6568429274592664981, 295186202455912472867, 14063084452068891794119, 708261127356256620907496
Offset: 1

Views

Author

Seiichi Manyama, Jun 14 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, (n/#)^n * Binomial[# + n - 1, #] &]; Array[a, 20] (* Amiram Eldar, Jul 12 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (n/d)^n*binomial(d+n-1, d));

Formula

a(n) = [x^n] Sum_{k>0} (1/(1 - (k*x)^k)^n - 1).
Showing 1-6 of 6 results.