A343668 Number of partitions of an n-set without blocks of size 8.
1, 1, 2, 5, 15, 52, 203, 877, 4139, 21138, 115885, 677745, 4206172, 27577513, 190289713, 1377315050, 10426866782, 82350895629, 677003941219, 5781485704892, 51193839084907, 469251258854001, 4445769329586348, 43475305461354931, 438270620701587657, 4549243731200717053
Offset: 0
Keywords
Crossrefs
Programs
-
Maple
a:= proc(n) option remember; `if`(n=0, 1, add( `if`(j=8, 0, a(n-j)*binomial(n-1, j-1)), j=1..n)) end: seq(a(n), n=0..25); # Alois P. Heinz, Apr 25 2021
-
Mathematica
nmax = 25; CoefficientList[Series[Exp[Exp[x] - 1 - x^8/8!], {x, 0, nmax}], x] Range[0, nmax]! Table[n! Sum[(-1)^k BellB[n - 8 k]/((n - 8 k)! k! (8!)^k), {k, 0, Floor[n/8]}], {n, 0, 25}] a[n_] := a[n] = If[n == 0, 1, Sum[If[k == 8, 0, Binomial[n - 1, k - 1] a[n - k]], {k, 1, n}]]; Table[a[n], {n, 0, 25}]
Formula
E.g.f.: exp(exp(x) - 1 - x^8/8!).
a(n) = n! * Sum_{k=0..floor(n/8)} (-1)^k * Bell(n-8*k) / ((n-8*k)! * k! * (8!)^k).