cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343808 Partial sums of A062074.

Original entry on oeis.org

0, 3, 75, 804, 5988, 36363, 193827, 943968, 4303200, 18652107, 77701107, 313483764, 1231813812, 4734541443, 17859008379, 66286569504, 242605938720, 877071559539, 3136507851387, 11108459253540, 39002734461540, 135876065474523, 470021588191155, 1615461644979264
Offset: 0

Views

Author

Sebastian Krüger, Apr 30 2021

Keywords

Examples

			a(3) = 1^3*3^1+2^3*3^2+3^3*3^3 = 3+8*9+27*27 = 804.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[3x(1 +12x +9x^2)/((1-3x)^4*(1-x)), {x, 0, 23}], x] (* Michael De Vlieger, May 01 2021 *)
  • PARI
    a(n) = sum(k=0, n, 3^k*k^3); \\ Michel Marcus, Apr 30 2021
    
  • PARI
    a(n) = ((((n<<2 - 6)*n + 12)*n - 11)*3^(n+1) + 33) >> 3; \\ Kevin Ryde, May 01 2021
    
  • SageMath
    [((4*n^3-6*n^2+12*n-11)*3^(n+1) +33)/8 for n in (0..30)] # G. C. Greubel, May 18 2022

Formula

a(n) = Sum_{k=0..n} 3^k*k^3.
a(n) = Sum_{k=0..n} A062074(k).
G.f.: 3*x*(1 + 12*x + 9*x^2)/((1 - 3*x)^4*(1 - x)). - Stefano Spezia, May 01 2021
a(n) = ((4*n^3-6*n^2+12*n-11)*3^(n+1) + 33) / 8. - Kevin Ryde, May 01 2021
E.g.f.: (3/8)*(11*exp(x) + (-11 + 30*x + 54*x^2 + 108*x^3)*exp(3*x)). - G. C. Greubel, May 18 2022
a(n) = 13*a(n-1) - 66*a(n-2) + 162*a(n-3) - 189*a(n-4) + 81*a(n-5). - Wesley Ivan Hurt, Apr 16 2023