A343832 a(n) = Sum_{k=0..n} k! * binomial(n,k) * binomial(2*n+1,k).
1, 4, 31, 358, 5509, 106096, 2456299, 66471826, 2059640713, 71920704124, 2794938616471, 119653108240414, 5595650767265101, 283841520215780008, 15523069639558351459, 910529206043204428426, 57023540590242398853649, 3797750659849704886903156, 268025698704886063968108943
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..365
- Wikipedia, Laguerre polynomials
- Index entries for sequences related to Laguerre polynomials
Programs
-
Magma
[Factorial(n)*Evaluate(LaguerrePolynomial(n, n+1), -1): n in [0..40]]; // G. C. Greubel, Aug 11 2022
-
Maple
a := n -> add(k!*binomial(n, k)*binomial(2*n+1, k), k=0..n): a := n -> n!*add(binomial(2*n+1, k)/(n-k)!, k=0..n): a := n -> (-1)^n*KummerU(-n, n+2, -1): a := n -> n!*LaguerreL(n, n+1, -1): # Peter Luschny, May 02 2021
-
Mathematica
a[n_] := Sum[k! * Binomial[n, k] * Binomial[2*n+1, k], {k, 0, n}]; Array[a, 20, 0] (* Amiram Eldar, May 01 2021 *) Table[(-1)^n * HypergeometricU[-n, 2 + n, -1], {n, 0, 20}] (* Vaclav Kotesovec, May 02 2021 *)
-
PARI
a(n) = sum(k=0, n, k!*binomial(n, k)*binomial(2*n+1, k));
-
PARI
a(n) = (2*n+1)!*sum(k=0, n, binomial(n, k)/(k+n+1)!);
-
PARI
a(n) = n!*sum(k=0, n, binomial(2*n+1, k)/(n-k)!);
-
PARI
a(n) = n!*pollaguerre(n, n+1, -1);
-
SageMath
[factorial(n)*gen_laguerre(n, n+1, -1) for n in (0..40)] # G. C. Greubel, Aug 11 2022
Formula
a(n) = (2*n+1)! * Sum_{k=0..n} binomial(n,k)/(k+n+1)!.
a(n) = n! * Sum_{k=0..n} binomial(2*n+1,k)/(n-k)!.
a(n) = n! * LaguerreL(n, n+1, -1).
a(n) = n! * [x^n] exp(x/(1 - x))/(1 - x)^(n+2).
a(n) == 1 (mod 3).
a(n) ~ 2^(2*n + 3/2) * n^n / exp(n-1). - Vaclav Kotesovec, May 02 2021
From Paul D. Hanna, Aug 16 2022: (Start)
E.g.f.: exp( (1-2*x - sqrt(1-4*x))/(2*x) ) * (1 - sqrt(1-4*x)) / (2*x*sqrt(1-4*x)), derived from the e.g.f for A082545 given by Mark van Hoeij.
E.g.f.: exp(C(x) - 1) * C(x) / sqrt(1-4*x), where C(x) = (1 - sqrt(1-4*x))/(2*x) is the Catalan function (A000108). (End)
Comments