A082545
a(n) = (2*n)! * Sum_{k=0..n} binomial(n,k)/(n+k)!.
Original entry on oeis.org
1, 3, 21, 229, 3393, 63591, 1442173, 38398641, 1174226049, 40558249963, 1561734494661, 66335687785533, 3081211226192641, 155369391396527439, 8452596370942940973, 493494408990278911561, 30777323181433121541633, 2042075395611656190239571
Offset: 0
-
[Factorial(n)*Evaluate(LaguerrePolynomial(n, n), -1): n in [0..40]]; // G. C. Greubel, Aug 11 2022
-
a:= n-> simplify(n!*LaguerreL(n$2, -1)):
seq(a(n), n=0..20); # Alois P. Heinz, Jul 27 2017
-
Table[n!*LaguerreL[n, n, -1], {n,0,17}] (* Jean-François Alcover, Jun 04 2019 *)
-
a(n) = sum(k=0, n, k!*binomial(n, k)*binomial(2*n, k)); \\ Seiichi Manyama, May 01 2021
-
a(n) = n!*pollaguerre(n, n, -1); \\ Seiichi Manyama, May 01 2021
-
[factorial(n)*gen_laguerre(n, n, -1) for n in (0..40)] # G. C. Greubel, Aug 11 2022
A152059
a(n) is the number of ways 2n-1 seats can be occupied by at most n people for n>=1, with a(0)=1.
Original entry on oeis.org
1, 2, 13, 136, 1961, 36046, 805597, 21204548, 642451441, 22021483546, 842527453421, 35591363004352, 1645373927307673, 82625931422081126, 4478815087922020861, 260648364396903639676, 16208855884741850686817
Offset: 0
-
[Factorial(n)*Evaluate(LaguerrePolynomial(n, n-1), -1): n in [0..40]]; // G. C. Greubel, Aug 11 2022
-
Table[(-1)^n * HypergeometricU[-n, n, -1], {n, 0, 20}] (* Vaclav Kotesovec, Oct 02 2017 *)
-
a(n)=sum(k=0,n,k!*binomial(2*n-1, k)*binomial(n, k))
-
a(n) = n!*pollaguerre(n, n-1, -1); \\ Seiichi Manyama, May 01 2021
-
[factorial(n)*gen_laguerre(n, n-1, -1) for n in (0..40)] # G. C. Greubel, Aug 11 2022
A176120
Triangle read by rows: Sum_{j=0..k} binomial(n, j)*binomial(k, j)*j!.
Original entry on oeis.org
1, 1, 2, 1, 3, 7, 1, 4, 13, 34, 1, 5, 21, 73, 209, 1, 6, 31, 136, 501, 1546, 1, 7, 43, 229, 1045, 4051, 13327, 1, 8, 57, 358, 1961, 9276, 37633, 130922, 1, 9, 73, 529, 3393, 19081, 93289, 394353, 1441729, 1, 10, 91, 748, 5509, 36046, 207775, 1047376, 4596553, 17572114
Offset: 0
Triangle begins
1;
1, 2;
1, 3, 7;
1, 4, 13, 34;
1, 5, 21, 73, 209;
1, 6, 31, 136, 501, 1546;
1, 7, 43, 229, 1045, 4051, 13327;
1, 8, 57, 358, 1961, 9276, 37633, 130922;
1, 9, 73, 529, 3393, 19081, 93289, 394353, 1441729;
1, 10, 91, 748, 5509, 36046, 207775, 1047376, 4596553, 17572114;
1, 11, 111, 1021, 8501, 63591, 424051, 2501801, 12975561, 58941091, 234662231;
- O. Ganyushkin and V. Mazorchuk, Classical Finite Transformation Semigroups, Springer, 2009, page 46.
-
A176120:=func< n,k| (&+[Factorial(j)*Binomial(n,j)*Binomial(k,j): j in [0..k]]) >;
[A176120(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Aug 11 2022
-
A176120 := proc(i,j)
add(binomial(i,k)*binomial(j,k)*k!,k=0..j) ;
end proc: # R. J. Mathar, Jul 28 2016
-
T[n_, m_]:= T[n,m]= Sum[Binomial[n, k]*Binomial[m, k]*k!, {k, 0, m}];
Table[T[n, m], {n,0,12}, {m,0,n}]//Flatten
-
def A176120(n,k): return sum(factorial(j)*binomial(n,j)*binomial(k,j) for j in (0..k))
flatten([[A176120(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Aug 11 2022
A343830
a(n) = numerator of (1/e) * Sum_{a_1>=1, a_2>=1, ... , a_n>=1} a_1 * a_2 * ... * a_n / (a_1 + a_2 + ... + a_n)!.
Original entry on oeis.org
1, 2, 31, 179, 787, 6631, 2456299, 33235913, 158433901, 17980176031, 2794938616471, 8546650588601, 5595650767265101, 35480190026972501, 15523069639558351459, 455264603021602214213, 57023540590242398853649, 949437664962426221725789, 5469912218467062529961407
Offset: 1
1, 2/3, 31/120, 179/2520, 787/51840, 6631/2494800, 2456299/6227020800, ...
- O. Furdui, Limits, Series and Fractional Part Integrals. Problems in Mathematical Analysis, Springer, New York, 2013. See Problem 3.114 and 3.118.
-
a[n_] := Numerator @ Sum[Binomial[n - 1, k]/(k + n)!, {k, 0, n - 1}]; Array[a, 20] (* Amiram Eldar, May 01 2021 *)
-
a(n) = numerator(sum(j=0, n, (-1)^(n+j-1)*binomial(n, j)*sum(k=0, n+j-1, (-1)^k/k!)));
-
a(n) = numerator(sum(k=0, n-1, binomial(n-1, k)/(k+n)!));
A343831
a(n) = denominator of (1/e) * Sum_{a_1>=1, a_2>=1, ... , a_n>=1} a_1 * a_2 * ... * a_n / (a_1 + a_2 + ... + a_n)!.
Original entry on oeis.org
1, 3, 120, 2520, 51840, 2494800, 6227020800, 653837184000, 27360571392000, 30411275102208000, 51090942171709440000, 1846572624206069760000, 15511210043330985984000000, 1361108681302294020096000000, 8841761993739701954543616000000
Offset: 1
1, 2/3, 31/120, 179/2520, 787/51840, 6631/2494800, 2456299/6227020800, ...
- O. Furdui, Limits, Series and Fractional Part Integrals. Problems in Mathematical Analysis, Springer, New York, 2013. See Problem 3.114 and 3.118.
-
a[n_] := Denominator @ Sum[Binomial[n - 1, k]/(k + n)!, {k, 0, n - 1}]; Array[a, 20] (* Amiram Eldar, May 01 2021 *)
-
a(n) = denominator(sum(j=0, n, (-1)^(n+j-1)*binomial(n, j)*sum(k=0, n+j-1, (-1)^k/k!)));
-
a(n) = denominator(sum(k=0, n-1, binomial(n-1, k)/(k+n)!));
A343896
a(n) = Sum_{k=0..n} (-1)^(n-k) * k! * binomial(n,k) * binomial(2*n+1,k).
Original entry on oeis.org
1, 2, 11, 104, 1405, 24694, 534223, 13719404, 407730041, 13760958410, 519827337331, 21726980525392, 995403499490101, 49600090942276094, 2670566242480261175, 154500457959360271124, 9557826199486960327153, 629586464929967678553874, 43994787057844036765113691
Offset: 0
-
a[n_] := n!*LaguerreL[n, n + 1, 1]; Array[a, 19, 0] (* Amiram Eldar, May 11 2021 *)
-
a(n) = sum(k=0, n, (-1)^(n-k)*k!*binomial(n, k)*binomial(2*n+1, k));
-
a(n) = (2*n+1)!*sum(k=0, n, (-1)^k*binomial(n, k)/(k+n+1)!);
-
a(n) = n!*sum(k=0, n, (-1)^(n-k)*binomial(2*n+1, k)/(n-k)!);
-
a(n) = n!*pollaguerre(n, n+1, 1);
A380491
a(n) = n! * Sum_{k=0..n} binomial(2*n-3,k)/(n-k)!.
Original entry on oeis.org
1, 0, 3, 34, 501, 9276, 207775, 5470158, 165625929, 5671386136, 216730118331, 9144481575450, 422249317829053, 21180324426577044, 1146880568461500951, 66677192513929212166, 4142571510546929867025, 273910161452560881843888, 19204878684852222745880179
Offset: 0
A380492
a(n) = n! * Sum_{k=0..n} binomial(2*n-2,k)/(n-k)!.
Original entry on oeis.org
1, 1, 7, 73, 1045, 19081, 424051, 11109337, 335262313, 11453449105, 436944953791, 18412283563081, 849345673881277, 42570185481576793, 2303643608370636715, 133859418832759525081, 8312945340897388101841, 549460711493172343519777, 38513032385247860120975863
Offset: 0
A380493
a(n) = n! * Sum_{k=0..n} binomial(2*n+3,k)/(n-k)!.
Original entry on oeis.org
1, 6, 57, 748, 12585, 259026, 6315001, 178134552, 5711078673, 205209960670, 8171229107481, 357235056697476, 17014791129640057, 877089297426429738, 48657292133825026905, 2890717184573264397616, 183125115830192864360481, 12323226433255671469949622
Offset: 0
A343890
Coefficient triangle of generalized Laguerre polynomials n!*L(n,n+1,x) (rising powers of x).
Original entry on oeis.org
1, 3, -1, 20, -10, 1, 210, -126, 21, -1, 3024, -2016, 432, -36, 1, 55440, -39600, 9900, -1100, 55, -1, 1235520, -926640, 257400, -34320, 2340, -78, 1, 32432400, -25225200, 7567560, -1146600, 95550, -4410, 105, -1, 980179200, -784143360, 249500160, -41583360, 3998400, -228480, 7616, -136, 1
Offset: 0
The triangle begins:
1;
3, -1;
20, -10, 1;
210, -126, 21, -1;
3024, -2016, 432, -36, 1;
55440, -39600, 9900, -1100, 55, -1;
1235520, -926640, 257400, -34320, 2340, -78, 1;
-
T[n_, k_] := (-1)^k * (2*n + 1)! * Binomial[n, k]/(k + n + 1)!; Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Amiram Eldar, May 03 2021 *)
-
T(n, k) = (-1)^k*(2*n+1)!*binomial(n,k)/(k+n+1)!;
-
row(n) = Vecrev(n!*pollaguerre(n, n+1));
Showing 1-10 of 10 results.
Comments