A343832
a(n) = Sum_{k=0..n} k! * binomial(n,k) * binomial(2*n+1,k).
Original entry on oeis.org
1, 4, 31, 358, 5509, 106096, 2456299, 66471826, 2059640713, 71920704124, 2794938616471, 119653108240414, 5595650767265101, 283841520215780008, 15523069639558351459, 910529206043204428426, 57023540590242398853649, 3797750659849704886903156, 268025698704886063968108943
Offset: 0
-
[Factorial(n)*Evaluate(LaguerrePolynomial(n, n+1), -1): n in [0..40]]; // G. C. Greubel, Aug 11 2022
-
a := n -> add(k!*binomial(n, k)*binomial(2*n+1, k), k=0..n):
a := n -> n!*add(binomial(2*n+1, k)/(n-k)!, k=0..n):
a := n -> (-1)^n*KummerU(-n, n+2, -1):
a := n -> n!*LaguerreL(n, n+1, -1): # Peter Luschny, May 02 2021
-
a[n_] := Sum[k! * Binomial[n, k] * Binomial[2*n+1, k], {k, 0, n}]; Array[a, 20, 0] (* Amiram Eldar, May 01 2021 *)
Table[(-1)^n * HypergeometricU[-n, 2 + n, -1], {n, 0, 20}] (* Vaclav Kotesovec, May 02 2021 *)
-
a(n) = sum(k=0, n, k!*binomial(n, k)*binomial(2*n+1, k));
-
a(n) = (2*n+1)!*sum(k=0, n, binomial(n, k)/(k+n+1)!);
-
a(n) = n!*sum(k=0, n, binomial(2*n+1, k)/(n-k)!);
-
a(n) = n!*pollaguerre(n, n+1, -1);
-
[factorial(n)*gen_laguerre(n, n+1, -1) for n in (0..40)] # G. C. Greubel, Aug 11 2022
A006902
a(n) = (2n)! * Sum_{k=0..n} (-1)^k * binomial(n,k) / (n+k)!.
Original entry on oeis.org
1, 1, 5, 47, 641, 11389, 248749, 6439075, 192621953, 6536413529, 248040482741, 10407123510871, 478360626529345, 23903857657114837, 1290205338991689821, 74803882225482661259, 4636427218380366565889, 305927317398343461908785, 21410426012751471702223333
Offset: 0
- J. D. Horton and A. Kurn, Counting sequences with complete increasing subsequences, Congress. Numerantium, 33 (1981), 75-80.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
[Factorial(n)*Evaluate(LaguerrePolynomial(n, n), 1): n in [0..40]]; // G. C. Greubel, Aug 11 2022
-
a:= proc(n) option remember; `if`(n<3, [1$2, 5][n+1], (
(n^3+n^2-7*n+4)*a(n-1)-2*(2*n-3)*(n-1)^3*a(n-2))/(n-2))
end:
seq(a(n), n=0..20); # Alois P. Heinz, Jan 15 2016
-
Table[(-1)^k HypergeometricU[-k, 1+k, 1], {k,0,20}] (* Vladimir Reshetnikov, Feb 16 2011 *)
-
a(n)=round(hyperu(-n,n+1,1)*(-1)^n) \\ Charles R Greathouse IV, Dec 30 2014
-
[factorial(n)*gen_laguerre(n,n,1) for n in (0..40)] # G. C. Greubel, Aug 11 2022
A295385
a(n) = n!*Sum_{k=0..n} binomial(2*n,n-k)*n^k/k!.
Original entry on oeis.org
1, 3, 32, 579, 14736, 483115, 19376928, 918980139, 50306339072, 3121729082739, 216541483852800, 16603614676249843, 1394473165806440448, 127308860552307549531, 12553171419275174137856, 1329537514269062031406875, 150531055969843353812533248, 18143286205523964035258551651
Offset: 0
-
[Factorial(n)*(&+[Binomial(2*n,n-k)*n^k/Factorial(k): k in [0..n]]): n in [0..30]]; // G. C. Greubel, Feb 06 2018
-
Table[n! SeriesCoefficient[Exp[n x/(1 - x)]/(1 - x)^(n + 1), {x, 0, n}], {n, 0, 17}]
Table[n! LaguerreL[n, n, -n], {n, 0, 17}]
Table[(-1)^n HypergeometricU[-n, n + 1, -n], {n, 0, 17}]
Join[{1}, Table[n! Sum[Binomial[2 n, n - k] n^k/k!, {k, 0, n}], {n, 1, 17}]]
-
for(n=0,30, print1(n!*sum(k=0,n, binomial(2*n,n-k)*n^k/k!), ", ")) \\ G. C. Greubel, Feb 06 2018
A152059
a(n) is the number of ways 2n-1 seats can be occupied by at most n people for n>=1, with a(0)=1.
Original entry on oeis.org
1, 2, 13, 136, 1961, 36046, 805597, 21204548, 642451441, 22021483546, 842527453421, 35591363004352, 1645373927307673, 82625931422081126, 4478815087922020861, 260648364396903639676, 16208855884741850686817
Offset: 0
-
[Factorial(n)*Evaluate(LaguerrePolynomial(n, n-1), -1): n in [0..40]]; // G. C. Greubel, Aug 11 2022
-
Table[(-1)^n * HypergeometricU[-n, n, -1], {n, 0, 20}] (* Vaclav Kotesovec, Oct 02 2017 *)
-
a(n)=sum(k=0,n,k!*binomial(2*n-1, k)*binomial(n, k))
-
a(n) = n!*pollaguerre(n, n-1, -1); \\ Seiichi Manyama, May 01 2021
-
[factorial(n)*gen_laguerre(n, n-1, -1) for n in (0..40)] # G. C. Greubel, Aug 11 2022
A176120
Triangle read by rows: Sum_{j=0..k} binomial(n, j)*binomial(k, j)*j!.
Original entry on oeis.org
1, 1, 2, 1, 3, 7, 1, 4, 13, 34, 1, 5, 21, 73, 209, 1, 6, 31, 136, 501, 1546, 1, 7, 43, 229, 1045, 4051, 13327, 1, 8, 57, 358, 1961, 9276, 37633, 130922, 1, 9, 73, 529, 3393, 19081, 93289, 394353, 1441729, 1, 10, 91, 748, 5509, 36046, 207775, 1047376, 4596553, 17572114
Offset: 0
Triangle begins
1;
1, 2;
1, 3, 7;
1, 4, 13, 34;
1, 5, 21, 73, 209;
1, 6, 31, 136, 501, 1546;
1, 7, 43, 229, 1045, 4051, 13327;
1, 8, 57, 358, 1961, 9276, 37633, 130922;
1, 9, 73, 529, 3393, 19081, 93289, 394353, 1441729;
1, 10, 91, 748, 5509, 36046, 207775, 1047376, 4596553, 17572114;
1, 11, 111, 1021, 8501, 63591, 424051, 2501801, 12975561, 58941091, 234662231;
- O. Ganyushkin and V. Mazorchuk, Classical Finite Transformation Semigroups, Springer, 2009, page 46.
-
A176120:=func< n,k| (&+[Factorial(j)*Binomial(n,j)*Binomial(k,j): j in [0..k]]) >;
[A176120(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Aug 11 2022
-
A176120 := proc(i,j)
add(binomial(i,k)*binomial(j,k)*k!,k=0..j) ;
end proc: # R. J. Mathar, Jul 28 2016
-
T[n_, m_]:= T[n,m]= Sum[Binomial[n, k]*Binomial[m, k]*k!, {k, 0, m}];
Table[T[n, m], {n,0,12}, {m,0,n}]//Flatten
-
def A176120(n,k): return sum(factorial(j)*binomial(n,j)*binomial(k,j) for j in (0..k))
flatten([[A176120(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Aug 11 2022
A343861
Coefficient triangle of generalized Laguerre polynomials n!*L(n,n,x) (rising powers of x).
Original entry on oeis.org
1, 2, -1, 12, -8, 1, 120, -90, 18, -1, 1680, -1344, 336, -32, 1, 30240, -25200, 7200, -900, 50, -1, 665280, -570240, 178200, -26400, 1980, -72, 1, 17297280, -15135120, 5045040, -840840, 76440, -3822, 98, -1, 518918400, -461260800, 161441280, -29352960, 3057600, -188160, 6720, -128, 1
Offset: 0
The triangle begins:
1;
2, -1;
12, -8, 1;
120, -90, 18, -1;
1680, -1344, 336, -32, 1;
30240, -25200, 7200, -900, 50, -1;
665280, -570240, 178200, -26400, 1980, -72, 1;
-
[(-1)^k*Factorial(n-k)*Binomial(n,k)*Binomial(2*n, n+k): k in [0..n], n in [0..12]]; // G. C. Greubel, Aug 11 2022
-
T[n_, k_] := (-1)^k * (2*n)! * Binomial[n, k]/(k + n)!; Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Amiram Eldar, May 11 2021 *)
-
T(n, k) = (-1)^k*(2*n)!*binomial(n,k)/(k+n)!;
-
row(n) = Vecrev(n!*pollaguerre(n, n));
-
def A343861(n,k): return (-1)^k*factorial(n-k)*binomial(n,k)*binomial(2*n,n+k)
flatten([[A343861(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Aug 11 2022
A380491
a(n) = n! * Sum_{k=0..n} binomial(2*n-3,k)/(n-k)!.
Original entry on oeis.org
1, 0, 3, 34, 501, 9276, 207775, 5470158, 165625929, 5671386136, 216730118331, 9144481575450, 422249317829053, 21180324426577044, 1146880568461500951, 66677192513929212166, 4142571510546929867025, 273910161452560881843888, 19204878684852222745880179
Offset: 0
A380492
a(n) = n! * Sum_{k=0..n} binomial(2*n-2,k)/(n-k)!.
Original entry on oeis.org
1, 1, 7, 73, 1045, 19081, 424051, 11109337, 335262313, 11453449105, 436944953791, 18412283563081, 849345673881277, 42570185481576793, 2303643608370636715, 133859418832759525081, 8312945340897388101841, 549460711493172343519777, 38513032385247860120975863
Offset: 0
A380493
a(n) = n! * Sum_{k=0..n} binomial(2*n+3,k)/(n-k)!.
Original entry on oeis.org
1, 6, 57, 748, 12585, 259026, 6315001, 178134552, 5711078673, 205209960670, 8171229107481, 357235056697476, 17014791129640057, 877089297426429738, 48657292133825026905, 2890717184573264397616, 183125115830192864360481, 12323226433255671469949622
Offset: 0
A253670
Square array read by ascending antidiagonals, T(n, k) = k!*[x^k](exp(x)*sum(j=0..n, C(2*n,j)*x^j)), n>=0, k>=0.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 5, 5, 1, 1, 7, 21, 7, 1, 1, 9, 43, 49, 9, 1, 1, 11, 73, 229, 89, 11, 1, 1, 13, 111, 529, 685, 141, 13, 1, 1, 15, 157, 1021, 3393, 1531, 205, 15, 1, 1, 17, 211, 1753, 8501, 12361, 2887, 281, 17, 1, 1, 19, 273, 2773, 18001, 63591, 32809, 4873, 369, 19, 1
Offset: 0
Square array starts:
[n\k][0 1 2 3 4 5 6]
[0] 1, 1, 1, 1, 1, 1, 1, ...
[1] 1, 3, 5, 7, 9, 11, 13, ...
[2] 1, 5, 21, 49, 89, 141, 205, ...
[3] 1, 7, 43, 229, 685, 1531, 2887, ...
[4] 1, 9, 73, 529, 3393, 12361, 32809, ...
[5] 1, 11, 111, 1021, 8501, 63591, 272851, ...
[6] 1, 13, 157, 1753, 18001, 169021, 1442173, ...
The first few rows as a triangle:
1
1, 1
1, 3, 1
1, 5, 5, 1
1, 7, 21, 7, 1
1, 9, 43, 49, 9, 1
1, 11, 73, 229, 89, 11, 1
-
T := (n,k) -> k!*coeff(series(exp(x)*add(binomial(2*n,j)*x^j,j=0..n), x, k+1), x, k): for n from 0 to 6 do lprint(seq(T(n,k), k=0..6)) od;
Showing 1-10 of 10 results.
Comments