A047909
Array read by antidiagonals upwards: h(n,k) = number of sequences with n copies each of 1,2,...,k and longest increasing subsequence of length k (n>=1, k>=1).
Original entry on oeis.org
1, 1, 1, 1, 5, 1, 1, 19, 47, 1, 1, 69, 1306, 641, 1, 1, 251, 31451, 195709, 11389, 1, 1, 923, 729811, 46922017, 50775091, 248749, 1, 1, 3431, 16928840, 10258694241, 162588279629, 20117051281, 6439075, 1, 1, 12869, 397222288, 2176464012941, 449363984934526, 1077273394836829, 11260558754404, 192621953, 1
Offset: 1
First few antidiagonals are:
1;
1, 1;
1, 5, 1;
1, 19, 47, 1;
1, 69, 1306, 641, 1;
1, 251, 31451, 195709, 11389, 1;
1, 923, 729811, 46922017, 50775091, 248749, 1;
...
First few rows are:
1, 1, 1, 1, 1, ...
1, 5, 47, 641, 11389, ...
1, 19, 1306, 195709, 50775091, ...
1, 69, 31451, 46922017, 162588279629, ...
1, 251, 729811, 10258694241, 449363984934526, ...
1, 923, 16928840, 2176464012941, 1162145520205261219, ...
...
-
g:= proc(l) option remember; (n-> f(l[1..nops(l)-1])*
binomial(n-1, l[-1]-1)+ add(f(sort(subsop(j=l[j]
-1, l))), j=1..nops(l)-1))(add(i, i=l))
end:
f:= l-> (n-> `if`(n<2 or l[-1]=1, 1, `if`(l[1]=0, 0, `if`(
n=2, binomial(l[1]+l[2], l[1])-1, g(l)))))(nops(l)):
h:= (n, k)-> f([n$k]):
seq(seq(h(1+d-k, k), k=1..d), d=1..10); # Alois P. Heinz, Feb 11 2016
# second Maple program:
b:= proc(k, p, j, l, t) option remember;
`if`(k=0, (-1)^t/l!, `if`(p<0, 0, add(b(k-i, p-1,
j+1, l+i*j, irem(t+i*j, 2))/(i!*p!^i), i=0..k)))
end:
h:= (p, k)-> k!*(p*k)!*b(k, p-1, 1, 0, irem(k, 2)):
seq(seq(h(1+d-k, k), k=1..d), d=1..10); # Alois P. Heinz, Mar 03 2016
-
g[l_] := g[l] = Function[n, f[l[[1 ;; -2]]]*Binomial[n-1, l[[-1]]-1] + Sum[ f[Sort[ReplacePart[l, j -> l[[j]] - 1]]], {j, 1, Length[l] -1}]][ Total[ l]]; f[l_] := Function [n, If[n<2 || l[[-1]]==1, 1, If[l[[1]]==0, 0, If[n == 2, Binomial[l[[1]] + l[[2]], l[[1]] ] - 1, g[l]]]]][Length[l]]; h[n_, k_] := f[Array[n&, k]]; Table[Table[h[1+d-k, k], {k, 1, d}], {d, 1, 10}] // Flatten (* Jean-François Alcover, Feb 19 2016, after Alois P. Heinz *)
New name, two terms corrected and more terms from
Alois P. Heinz, Feb 08 2016
A082545
a(n) = (2*n)! * Sum_{k=0..n} binomial(n,k)/(n+k)!.
Original entry on oeis.org
1, 3, 21, 229, 3393, 63591, 1442173, 38398641, 1174226049, 40558249963, 1561734494661, 66335687785533, 3081211226192641, 155369391396527439, 8452596370942940973, 493494408990278911561, 30777323181433121541633, 2042075395611656190239571
Offset: 0
-
[Factorial(n)*Evaluate(LaguerrePolynomial(n, n), -1): n in [0..40]]; // G. C. Greubel, Aug 11 2022
-
a:= n-> simplify(n!*LaguerreL(n$2, -1)):
seq(a(n), n=0..20); # Alois P. Heinz, Jul 27 2017
-
Table[n!*LaguerreL[n, n, -1], {n,0,17}] (* Jean-François Alcover, Jun 04 2019 *)
-
a(n) = sum(k=0, n, k!*binomial(n, k)*binomial(2*n, k)); \\ Seiichi Manyama, May 01 2021
-
a(n) = n!*pollaguerre(n, n, -1); \\ Seiichi Manyama, May 01 2021
-
[factorial(n)*gen_laguerre(n, n, -1) for n in (0..40)] # G. C. Greubel, Aug 11 2022
A267480
Number T(n,k) of words on {1,1,2,2,...,n,n} with longest increasing subsequence of length k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 1, 5, 0, 1, 42, 47, 0, 1, 351, 1527, 641, 0, 1, 3113, 43910, 54987, 11389, 0, 1, 29003, 1302660, 3844840, 2059147, 248749, 0, 1, 280220, 40970298, 265777225, 285588543, 82025038, 6439075, 0, 1, 2782475, 1364750889, 19104601915, 37783672691, 19773928713, 3507289363, 192621953
Offset: 0
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 5;
0, 1, 42, 47;
0, 1, 351, 1527, 641;
0, 1, 3113, 43910, 54987, 11389;
0, 1, 29003, 1302660, 3844840, 2059147, 248749;
0, 1, 280220, 40970298, 265777225, 285588543, 82025038, 6439075;
- Alois P. Heinz, Rows n = 0..18, flattened
- Ferenc Balogh, A generalization of Gessel's generating function to enumerate words with double or triple occurrences in each letter and without increasing subsequences of a given length, arXiv:1505.01389, 2015
- Shalosh B. Ekhad and Doron Zeilberger, The Generating Functions Enumerating 12..d-Avoiding Words with r occurrences of each of 1,2, ..., n are D-finite for all d and all r, 2014
A267532
Number of words on {1,1,2,2,...,n,n} with longest increasing subsequence of length < n.
Original entry on oeis.org
0, 0, 1, 43, 1879, 102011, 7235651, 674641325, 81537026047, 12498099730471, 2375632826877259, 548818073236649129, 151476182218777630655, 49229890784448694885163, 18608906461974462064310179, 8094874797394331233877338741, 4015057931973886657462193434111
Offset: 0
a(2) = 1: 2211.
a(3) = 43: 113322, 131322, 133122, 133212, 133221, 211332, 213132, 213312, 213321, 221133, 221313, 221331, 223113, 223131, 223311, 231132, 231312, 231321, 232113, 232131, 232311, 233112, 233121, 233211, 311322, 313122, 313212, 313221, 321132, 321312, 321321, 322113, 322131, 322311, 323112, 323121, 323211, 331122, 331212, 331221, 332112, 332121, 332211.
-
b:= proc(n) option remember; `if`(n<3, [1$2, 5][n+1], (
(n^3+n^2-7*n+4)*b(n-1)-2*(2*n-3)*(n-1)^3*b(n-2))/(n-2))
end:
a:= n-> (2*n)!/(2^n)-b(n):
seq(a(n), n=0..20);
A295384
a(n) = n!*Sum_{k=0..n} (-1)^k*binomial(2*n,n-k)*n^k/k!.
Original entry on oeis.org
1, 1, 0, -15, -112, -135, 9504, 152425, 610560, -27692847, -765107200, -6289891839, 213472972800, 9380264146825, 129378550468608, -3294028613874375, -226623617585053696, -4707649131227927775, 83803818828756418560, 9446689798312021406353, 277055229100887244800000
Offset: 0
-
[Factorial(n)*(&+[(-1)^k*Binomial(2*n,n-k)*n^k/Factorial(k): k in [0..n]]): n in [0..30]]; // G. C. Greubel, Feb 06 2018
-
a := n -> pochhammer(n, n)*hypergeom([1 - n], [n], n):
seq(simplify(a(n)), n = 0..20); # Peter Luschny, Mar 23 2023
-
Table[n! SeriesCoefficient[Exp[-n x/(1 - x)]/(1 - x)^(n + 1), {x, 0, n}], {n, 0, 20}]
Table[n! LaguerreL[n, n, n], {n, 0, 20}]
Table[(-1)^n HypergeometricU[-n, n + 1, n], {n, 0, 20}]
Join[{1}, Table[n! Sum[(-1)^k Binomial[2 n, n - k] n^k/k!, {k, 0, n}], {n, 1, 20}]]
-
for(n=0,30, print1(n!*sum(k=0,n, (-1)^k*binomial(2*n,n-k)*n^k/k!), ", ")) \\ G. C. Greubel, Feb 06 2018
A343861
Coefficient triangle of generalized Laguerre polynomials n!*L(n,n,x) (rising powers of x).
Original entry on oeis.org
1, 2, -1, 12, -8, 1, 120, -90, 18, -1, 1680, -1344, 336, -32, 1, 30240, -25200, 7200, -900, 50, -1, 665280, -570240, 178200, -26400, 1980, -72, 1, 17297280, -15135120, 5045040, -840840, 76440, -3822, 98, -1, 518918400, -461260800, 161441280, -29352960, 3057600, -188160, 6720, -128, 1
Offset: 0
The triangle begins:
1;
2, -1;
12, -8, 1;
120, -90, 18, -1;
1680, -1344, 336, -32, 1;
30240, -25200, 7200, -900, 50, -1;
665280, -570240, 178200, -26400, 1980, -72, 1;
-
[(-1)^k*Factorial(n-k)*Binomial(n,k)*Binomial(2*n, n+k): k in [0..n], n in [0..12]]; // G. C. Greubel, Aug 11 2022
-
T[n_, k_] := (-1)^k * (2*n)! * Binomial[n, k]/(k + n)!; Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Amiram Eldar, May 11 2021 *)
-
T(n, k) = (-1)^k*(2*n)!*binomial(n,k)/(k+n)!;
-
row(n) = Vecrev(n!*pollaguerre(n, n));
-
def A343861(n,k): return (-1)^k*factorial(n-k)*binomial(n,k)*binomial(2*n,n+k)
flatten([[A343861(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Aug 11 2022
A343896
a(n) = Sum_{k=0..n} (-1)^(n-k) * k! * binomial(n,k) * binomial(2*n+1,k).
Original entry on oeis.org
1, 2, 11, 104, 1405, 24694, 534223, 13719404, 407730041, 13760958410, 519827337331, 21726980525392, 995403499490101, 49600090942276094, 2670566242480261175, 154500457959360271124, 9557826199486960327153, 629586464929967678553874, 43994787057844036765113691
Offset: 0
-
a[n_] := n!*LaguerreL[n, n + 1, 1]; Array[a, 19, 0] (* Amiram Eldar, May 11 2021 *)
-
a(n) = sum(k=0, n, (-1)^(n-k)*k!*binomial(n, k)*binomial(2*n+1, k));
-
a(n) = (2*n+1)!*sum(k=0, n, (-1)^k*binomial(n, k)/(k+n+1)!);
-
a(n) = n!*sum(k=0, n, (-1)^(n-k)*binomial(2*n+1, k)/(n-k)!);
-
a(n) = n!*pollaguerre(n, n+1, 1);
A358112
Table read by rows. A statistic of permutations of the multiset {1,1,2,2,...,n,n}.
Original entry on oeis.org
1, 5, 1, 47, 42, 1, 641, 1659, 219, 1, 11389, 72572, 28470, 968, 1, 248749, 3610485, 3263402, 357746, 4017, 1, 6439075, 204023334, 371188155, 95559940, 3853617, 16278, 1, 192621953, 12989570167, 43844432805, 22448025251, 2216662051, 38270373, 65399, 1
Offset: 1
[n\d] 0 1 2 3 4 5 6
-----------------------------------------------------------------------------
[1] 1;
[2] 5, 1;
[3] 47, 42, 1;
[4] 641, 1659, 219, 1;
[5] 11389, 72572, 28470, 968, 1;
[6] 248749, 3610485, 3263402, 357746, 4017, 1;
[7] 6439075, 204023334, 371188155, 95559940, 3853617, 16278, 1
[8] 192621953, 12989570167, 43844432805, 22448025251, 2216662051, 38270373,
65399, 1
-
P := (n, x) -> (2*n)!*add(add(binomial(n, k)*binomial(n-k, j)*
(-1)^(n-k-j)*max(x - k, 0)^(2*n - j)/(2*n - j)!, j = 0..n-k), k = 0..n):
Trow := n -> seq(P(n, k+1) - P(n, k), k = 0..n-1):
seq(print(Trow(n)), n = 1..8);
Showing 1-8 of 8 results.
Comments