cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343908 a(n) is the least prime == 4 (mod prime(n)).

Original entry on oeis.org

2, 7, 19, 11, 37, 17, 89, 23, 73, 149, 97, 41, 127, 47, 239, 163, 181, 431, 71, 359, 223, 83, 419, 271, 101, 307, 107, 967, 113, 569, 131, 397, 1237, 421, 2239, 457, 1103, 167, 839, 523, 541, 547, 577, 197, 1777, 601, 1481, 227, 3863, 233, 3499, 2633, 727, 757, 1289, 1319, 811, 1901, 281, 1409
Offset: 1

Views

Author

Zak Seidov, May 03 2021

Keywords

Examples

			a(3) = 19 because 19 is the least prime == 4 (mod prime(3)).
a(4) = 11 because 11 is the least prime == 4 (mod prime(4)).
		

Crossrefs

Cf. A000040, A023200 (primes p such that p+4 is also prime), A034694, A035095, A279756.

Programs

  • Maple
    a:= proc(n) local q, p; p:= ithprime(n); q:= p;
          do if irem(q-4, p)=0 then break fi;
             q:= nextprime(q);
          od; q
        end:
    seq(a(n), n=1..60);  # Alois P. Heinz, May 03 2021
  • Mathematica
    s = {}; p = 5; Do[q = p + 2; While[Mod[q, p] != 4, q = NextPrime[q]]; AppendTo[s, q]; p = NextPrime[p], {100}]; s
  • PARI
    a(n) = my(p=prime(n)); forprime(q=2,, if (Mod(q, p) == 4, return(q))); \\ Michel Marcus, May 03 2021