cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344191 a(n) = Catalan(n) * (n^2 + 2) / (n + 2).

Original entry on oeis.org

1, 1, 3, 11, 42, 162, 627, 2431, 9438, 36686, 142766, 556206, 2169268, 8469060, 33096195, 129454695, 506793270, 1985612310, 7785510810, 30548406570, 119944382220, 471241577820, 1852521913710, 7286586193926, 28675561428972, 112905199767052, 444752335104252
Offset: 0

Views

Author

F. Chapoton, May 11 2021

Keywords

Comments

Conjecture: These are the number of linear intervals in Pallo's comb posets. An interval is linear if it is isomorphic to a total order. The conjecture has been checked up to the term 36686 for n = 9.

Examples

			All 3 intervals in the poset of cardinality 2 are linear. All 11 intervals in the poset of cardinality 5 are linear.
		

Crossrefs

Programs

  • Maple
    a := n -> `if`(n = 0, 1, a(n-1)*(2*(2*n-1)*(n^2+2))/((n+2)*(n^2-2*n+3))):
    seq(a(n), n = 0..19); # Peter Luschny, May 11 2021
  • Mathematica
    a[n_] := CatalanNumber[n] (n^2 + 2) / (n + 2);
    Table[a[n], { n, 0, 23}] (* Peter Luschny, May 11 2021 *)
  • PARI
    a(n) = (binomial(2*n,n)/(n+1))*((n^2 + 2)/(n + 2)); \\ Michel Marcus, May 11 2021
  • Sage
    def a(n):
        return catalan_number(n)+sum(2**(n-k)/factorial(k-2)*(n-k+4)/(n+2)*prod(n+i for i in range(2, k)) for k in range(2, n+1))
    
  • Sage
    def a(n): return catalan_number(n) + binomial(2*n, n-2)
    print([a(n) for n in range(24)]) # Peter Luschny, May 11 2021
    

Formula

a(n) = Catalan(n) + (1/(n + 2))*Sum_{k=2..n}((2^(n - k)*(n - k + 4)/(k - 2)!)* Product_{i=2..k-1}(n + i)).
From Peter Luschny, May 11 2021: (Start)
a(n) = [x^n] ((2*x + sqrt(1 - 4*x) - 1)*(3*x - 1))/(2*sqrt(1 - 4*x)*x^2).
a(n) = n! * [x^n] exp(2*x)*(BesselI(0, 2*x) - BesselI(1, 2*x) + BesselI(2, 2*x)).
a(n) = a(n-1)*(2*(2*n - 1)*(n^2 + 2))/((n + 2)*(n^2 - 2*n + 3)) for n >= 1.
a(n) = Catalan(n) + binomial(2*n, n-2) = A000108(n) + A002694(n).
a(n) ~ (2^(2*n - 3)*(8*n - 25)) / (sqrt(Pi)*n^(3/2)). (End)
a(n) = A121686(n) / 2. - Hugo Pfoertner, May 11 2021