cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A343969 Numbers that are the sum of three positive cubes in exactly 4 ways.

Original entry on oeis.org

13896, 40041, 44946, 52200, 53136, 58995, 76168, 82278, 93339, 94184, 105552, 110683, 111168, 112384, 112832, 113400, 143424, 149416, 149904, 167616, 169560, 171296, 175104, 196776, 197569, 208144, 216126, 221696, 222984, 224505, 235808, 240813, 252062, 255312, 262781, 266031, 281728, 291213
Offset: 1

Views

Author

David Consiglio, Jr., May 05 2021

Keywords

Comments

Differs from A343968 at term 20 because 161568 = 2^3 + 16^3 + 54^3 = 9^3 + 15^3 + 54^3 = 17^3 + 39^3 + 46^3 = 18^3 + 19^3 + 53^3 = 26^3 + 36^3 + 46^3.

Examples

			44946 is a term because 44946 = 7^3 + 12^3 + 35^3 = 9^3 + 17^3 + 34^3 = 11^3 + 24^3 + 31^3 = 16^3 + 17^3 + 33^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1,50)]
    for pos in cwr(power_terms,3):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k,v in keep.items() if v == 4])
    for x in range(len(rets)):
        print(rets[x])

A344353 Numbers that are the sum of four fourth powers in exactly four ways.

Original entry on oeis.org

236674, 282018, 300834, 334818, 478338, 637794, 650034, 650658, 708483, 708834, 729938, 789378, 816578, 832274, 849954, 941859, 989043, 1042083, 1045539, 1099203, 1099458, 1102258, 1179378, 1243074, 1257954, 1283874, 1323234, 1334979, 1339074, 1342979, 1352898, 1357059, 1379043, 1518578
Offset: 1

Views

Author

David Consiglio, Jr., May 15 2021

Keywords

Comments

Differs from A344352 at term 52 because 2147874 = 2^4 + 14^4 + 31^4 + 33^4 = 4^4 + 23^4 + 27^4 + 34^4 = 7^4 + 21^4 + 28^4 + 34^4 = 12^4 + 17^4 + 29^4 + 34^4 = 14^4 + 18^4 + 19^4 + 37^4.

Examples

			300834 is a term of this sequence because 300834 = 1^4 + 4^4 + 12^4 + 23^4 = 1^4 + 16^4 + 18^4 + 19^4 = 3^4 + 6^4 + 18^4 + 21^4 = 7^4 + 14^4 + 16^4 + 21^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1,200)]
    count = 1
    for pos in cwr(power_terms,4):
        tot = sum(pos)
        keep[tot] += 1
        count += 1
    rets = sorted([k for k,v in keep.items() if v == 4])
    for x in range(len(rets)):
        print(rets[x])

A344240 Numbers that are the sum of three fourth powers in exactly three ways.

Original entry on oeis.org

811538, 1733522, 2798978, 3750578, 4614722, 6573938, 7303842, 8878898, 12771458, 12984608, 13760258, 14677362, 15601698, 16196193, 17868242, 21556178, 22349522, 25190802, 25589858, 27736352, 29969282, 41532498, 44048498, 44783648, 45182018, 50944418, 54894242, 57052562, 59165442, 60009248
Offset: 1

Views

Author

David Consiglio, Jr., May 12 2021

Keywords

Comments

Differs from A344239 at term 6 because 5978882 = 3^4 + 40^4 + 43^4 = 8^4 + 37^4 + 45^4 = 15^4 + 32^4 + 47^4 = 23^4 + 25^4 + 48^4

Examples

			2798978 is a member of this sequence because 2798978 = 6^4 + 31^4 + 37^4 = 9^4 + 29^4 + 38^4 = 13^4 + 26^4 + 39^4
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1,50)]
    for pos in cwr(power_terms,3):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k,v in keep.items() if v == 3])
    for x in range(len(rets)):
        print(rets[x])

A344277 Numbers that are the sum of three fourth powers in four or more ways.

Original entry on oeis.org

5978882, 15916082, 20621042, 22673378, 30623138, 33998258, 39765362, 48432482, 53809938, 61627202, 65413922, 74346818, 84942578, 88258898, 95662112, 103363442, 117259298, 128929682, 131641538, 137149922, 143244738, 155831858, 158811842, 167042642, 174135122, 175706258, 188529362
Offset: 1

Views

Author

David Consiglio, Jr., May 13 2021

Keywords

Examples

			20621042 is a member of this sequence because 20621042 = 5^4 + 54^4 + 59^4 = 10^4 + 51^4 + 61^4 = 25^4 + 46^4 + 63^4 = 26^4 + 39^4 + 65^4
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1,50)]
    for pos in cwr(power_terms,3):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k,v in keep.items() if v >= 4])
    for x in range(len(rets)):
        print(rets[x])

A344365 Numbers that are the sum of three fourth powers in exactly five ways.

Original entry on oeis.org

1234349298, 1289202642, 1948502738, 2935465442, 4162186322, 5632212978, 7360969778, 8657437698, 8753497298, 11079947522, 15784025138, 17536524642, 19749588768, 20627242272, 21318234098, 31176043808, 35240346162, 37459676898, 39912730578, 42901649042
Offset: 1

Views

Author

Sean A. Irvine, May 15 2021

Keywords

Examples

			1234349298 is a member of this sequence because 1234349298 = 7^4 + 154^4 + 161^4 = 26^4 + 143^4 + 169^4 = 61^4 + 118^4 + 179^4 = 74^4 + 107^4 + 181^4 = 91^4 + 91^4 + 182^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 500)]
    for pos in cwr(power_terms, 3):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v == 5])
    for x in range(len(rets)):
        print(rets[x])
Showing 1-5 of 5 results.