cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A343968 Numbers that are the sum of three positive cubes in four or more ways.

Original entry on oeis.org

13896, 40041, 44946, 52200, 53136, 58995, 76168, 82278, 93339, 94184, 105552, 110683, 111168, 112384, 112832, 113400, 143424, 149416, 149904, 161568, 167616, 169560, 171296, 175104, 196776, 197569, 208144, 216126, 221696, 222984, 224505, 235808, 240813, 252062, 255312, 262683, 262781, 266031
Offset: 1

Views

Author

David Consiglio, Jr., May 05 2021

Keywords

Examples

			44946 =  7^3 + 12^3 + 35^3
      =  9^3 + 17^3 + 34^3
      = 11^3 + 24^3 + 31^3
      = 16^3 + 17^3 + 33^3
so 44946 is a term.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1,50)]
    for pos in cwr(power_terms,3):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k,v in keep.items() if v >= 4])
    for x in range(len(rets)):
        print(rets[x])

A344352 Numbers that are the sum of four fourth powers in four or more ways.

Original entry on oeis.org

236674, 282018, 300834, 334818, 478338, 637794, 650034, 650658, 708483, 708834, 729938, 789378, 816578, 832274, 849954, 941859, 989043, 1042083, 1045539, 1099203, 1099458, 1102258, 1179378, 1243074, 1257954, 1283874, 1323234, 1334979, 1339074, 1342979, 1352898, 1357059, 1379043, 1518578
Offset: 1

Views

Author

David Consiglio, Jr., May 15 2021

Keywords

Examples

			300834 is a term of this sequence because 300834 = 1^4 + 4^4 + 12^4 + 23^4 = 1^4 + 16^4 + 18^4 + 19^4 = 3^4 + 6^4 + 18^4 + 21^4 = 7^4 + 14^4 + 16^4 + 21^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1,200)]
    count = 1
    for pos in cwr(power_terms,4):
        tot = sum(pos)
        keep[tot] += 1
        count += 1
    rets = sorted([k for k,v in keep.items() if v >= 4])
    for x in range(len(rets)):
        print(rets[x])

A344239 Numbers that are the sum of three fourth powers in three or more ways.

Original entry on oeis.org

811538, 1733522, 2798978, 3750578, 4614722, 5978882, 6573938, 7303842, 8878898, 12771458, 12984608, 13760258, 14677362, 15601698, 15916082, 16196193, 17868242, 20621042, 21556178, 22349522, 22673378, 25190802, 25589858, 27736352, 29969282, 30623138, 33998258, 39765362, 41532498, 44048498
Offset: 1

Views

Author

David Consiglio, Jr., May 12 2021

Keywords

Examples

			2798978 =  6^4 + 31^4 + 37^4
        =  9^4 + 29^4 + 38^4
        = 13^4 + 26^4 + 39^4
so 2798978 is a term of this sequence.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1,50)]
    for pos in cwr(power_terms,3):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k,v in keep.items() if v >= 3])
    for x in range(len(rets)):
        print(rets[x])

A344278 Numbers that are the sum of three fourth powers in exactly four ways.

Original entry on oeis.org

5978882, 15916082, 20621042, 22673378, 30623138, 33998258, 39765362, 48432482, 53809938, 61627202, 65413922, 74346818, 84942578, 88258898, 95662112, 103363442, 117259298, 128929682, 131641538, 137149922, 143244738, 155831858, 158811842, 167042642, 174135122, 175706258, 188529362
Offset: 1

Views

Author

David Consiglio, Jr., May 13 2021

Keywords

Comments

Differs from A344277 at term 37 because 292965218 = 2^4 + 109^4 + 111^4 = 21^4 + 98^4 + 119^4 = 27^4 + 94^4 + 121^4 = 34^4 + 89^4 + 123^4 = 49^4 + 77^4 + 126^4 = 61^4 + 66^4 + 127^4

Examples

			20621042 is a member of this sequence because 20621042 = 5^4 + 54^4 + 59^4 = 10^4 + 51^4 + 61^4 = 25^4 + 46^4 + 63^4 = 26^4 + 39^4 + 65^4
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1,50)]
    for pos in cwr(power_terms,3):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k,v in keep.items() if v == 4])
    for x in range(len(rets)):
        print(rets[x])

A344364 Numbers that are the sum of three fourth powers in five or more ways.

Original entry on oeis.org

292965218, 779888018, 1010431058, 1110995522, 1234349298, 1289202642, 1500533762, 1665914642, 1948502738, 2158376402, 2373191618, 2636686962, 2689817858, 2935465442, 3019732898, 3205282178, 3642994082, 3831800882, 4162186322, 4324686002, 4687443488, 5064808658
Offset: 1

Views

Author

Sean A. Irvine, May 15 2021

Keywords

Examples

			292965218 is a member of this sequence because 292965218 = 2^4 + 109^4 + 111^4 = 21^4 + 98^4 + 119^4 = 27^4 + 94^4 + 121^4 = 34^4 + 89^4 + 123^4 = 49^4 + 77^4 + 126^4 = 61^4 + 66^4 + 127^4 (actually has 6 representations, so is a member of this sequence but not of A344365).
1234349298 is a member of this sequence because 1234349298 = 7^4 + 154^4 + 161^4 = 26^4 + 143^4 + 169^4 = 61^4 + 118^4 + 179^4 = 74^4 + 107^4 + 181^4 = 91^4 + 91^4 + 182^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 500)]
    for pos in cwr(power_terms, 3):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v >= 5])
    for x in range(len(rets)):
        print(rets[x])
Showing 1-5 of 5 results.