A343968 Numbers that are the sum of three positive cubes in four or more ways.
13896, 40041, 44946, 52200, 53136, 58995, 76168, 82278, 93339, 94184, 105552, 110683, 111168, 112384, 112832, 113400, 143424, 149416, 149904, 161568, 167616, 169560, 171296, 175104, 196776, 197569, 208144, 216126, 221696, 222984, 224505, 235808, 240813, 252062, 255312, 262683, 262781, 266031
Offset: 1
Keywords
Examples
44946 = 7^3 + 12^3 + 35^3 = 9^3 + 17^3 + 34^3 = 11^3 + 24^3 + 31^3 = 16^3 + 17^3 + 33^3 so 44946 is a term.
Links
- David Consiglio, Jr., Table of n, a(n) for n = 1..20000
Programs
-
Python
from itertools import combinations_with_replacement as cwr from collections import defaultdict keep = defaultdict(lambda: 0) power_terms = [x**3 for x in range(1,50)] for pos in cwr(power_terms,3): tot = sum(pos) keep[tot] += 1 rets = sorted([k for k,v in keep.items() if v >= 4]) for x in range(len(rets)): print(rets[x])
Comments