A351409
a(n) = n*(n!)^(2*n-2).
Original entry on oeis.org
1, 8, 3888, 764411904, 214990848000000000, 224634374557469245440000000000, 1880461634768804771224006806208512000000000000, 240091793104790737576620139562796649430329798636339200000000000000, 813675117804798213250391541747787241264315446434692481270971279693253181440000000000000000
Offset: 1
- Andrew Howroyd, Table of n, a(n) for n = 1..20
- Matvey Borodin, Eric Chen, Aidan Duncan, Tanya Khovanova, Boyan Litchev, Jiahe Liu, Veronika Moroz, Matthew Qian, Rohith Raghavan, Garima Rastogi, and Michael Voigt, Sequences of the Stable Matching Problem, arXiv:2201.00645 [math.HO], 2021, [Section 7, Symmetries].
A344667
a(n) is the number of preference profiles in the stable marriage problem with 4 men and 4 women that generate n possible stable matchings.
Original entry on oeis.org
65867261184, 35927285472, 7303612896, 861578352, 111479616, 3478608, 581472, 36432, 0, 144
Offset: 1
- Matvey Borodin, Eric Chen, Aidan Duncan, Tanya Khovanova, Boyan Litchev, Jiahe Liu, Veronika Moroz, Matthew Qian, Rohith Raghavan, Garima Rastogi, and Michael Voigt, Sequences of the Stable Matching Problem, arXiv:2201.00645 [math.HO], 2021.
A344666
a(n) is the number of preference profiles in the stable marriage problem with 3 men and 3 women that generate n possible stable matchings.
Original entry on oeis.org
34080, 11484, 1092
Offset: 1
- Matvey Borodin, Eric Chen, Aidan Duncan, Tanya Khovanova, Boyan Litchev, Jiahe Liu, Veronika Moroz, Matthew Qian, Rohith Raghavan, Garima Rastogi, and Michael Voigt, Sequences of the Stable Matching Problem, arXiv:2201.00645 [math.HO], 2021.
A344668
a(n) is the number of preference profiles in the stable marriage problem with n men and n women that generate exactly 1 possible stable matching.
Original entry on oeis.org
1, 14, 34080, 65867261184
Offset: 1
For n=2, there are 16 possible preference profiles: 14 of them generate one stable matching and 2 of them generate two stable matchings. Thus, a(2) = 14.
- Matvey Borodin, Eric Chen, Aidan Duncan, Tanya Khovanova, Boyan Litchev, Jiahe Liu, Veronika Moroz, Matthew Qian, Rohith Raghavan, Garima Rastogi, and Michael Voigt, Sequences of the Stable Matching Problem, arXiv:2201.00645 [math.HO], 2021.
A368419
a(n) is the number of reduced stable marriage problem instances of order 5 that generate 16 - n possible stable matchings.
Original entry on oeis.org
176130, 498320, 19193670, 143035180, 348655065
Offset: 0
- D. R. Eilers, "The Maximum Number of Stable Matchings in the Stable Marriage Problem of Order 5 is 16". In preparation.
- Dr Jason Wilson, Director, Biola Quantitative Consulting Center, "Stable Marriage Problem Project Report", crediting team of Annika Miller, Henry Lin, and Joseph Liu; December 22, 2023.
- A. T. Benjamin, C. Converse, and H. A. Krieger, Note. How do I marry thee? Let me count the ways, Discrete Appl. Math. 59 (1995) 285-292.
- Matvey Borodin, Eric Chen, Aidan Duncan, Tanya Khovanova, Boyan Litchev, Jiahe Liu, Veronika Moroz, Matthew Qian, Rohith Raghavan, Garima Rastogi, and Michael Voigt, Sequences of the Stable Matching Problem, arXiv:2201.00645 [math.HO], 2021, [Section 5, Distribution for the number of stable matchings].
- D. E. Knuth, Mariages Stables, Presses Univ. de Montréal, 1976 (Research Problem #5).
- David F. Manlove, Algorithmics of Matching Under Preferences, World Scientific (2013) [Section 2.2.2].
- E. G. Thurber, Concerning the maximum number of stable matchings in the stable marriage problem, Discrete Math., 248 (2002), 195-219.
Cf.
A351430 (order 4, in reverse order).
A368433
a(n) is the number of reduced instances in the stable marriage problem of order n that generate the maximum possible number of stable matchings.
Original entry on oeis.org
1, 1, 91, 1, 176130
Offset: 1
Showing 1-6 of 6 results.
Comments