cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345013 Triangle read by rows, related to clusters of type D.

Original entry on oeis.org

1, 4, 3, 15, 20, 6, 56, 105, 60, 10, 210, 504, 420, 140, 15, 792, 2310, 2520, 1260, 280, 21, 3003, 10296, 13860, 9240, 3150, 504, 28, 11440, 45045, 72072, 60060, 27720, 6930, 840, 36
Offset: 1

Views

Author

F. Chapoton, Sep 30 2021

Keywords

Comments

Let C_{n+1} be the cyclic quiver with n+1 vertices. Empirically, the n-th row is related to the green-mutation partial order on clusters for this quiver, restricted to clusters that do not meet the initial seed.
Apparently, value of the associated polynomials at -2 is A089849, up to sign.
By evaluating the associated polynomials at x-1, one apparently gets A062196.
The rows seem to give (up to sign) the coefficients in the expansion of the integer-valued polynomial (x+1)^2*(x+2)^2*(x+3)^2*...*(x+n)^2*(x+n+1)*(x+n+2) / (n! * (n+2)!) in the basis made of the binomial(x+i,i). - F. Chapoton, Oct 31 2022
Chapoton's observation above is correct: the precise expansion is (x+1)^2*(x+2)^2*(x+3)^2*...*(x+n)^2*(x+n+1)*(x+n+2) / (n! * (n+2)!) = Sum_{k = 0..n} (-1)^k*T(n+1,k)*binomial(x+2*n+2-k, 2*n+2-k), as can be verified using the WZ algorithm. For example, n = 2 gives (x+1)^2*(x+2)^2*(x+3)*(x+4)/(2!*4!) = 15*binomial(x+6,6) - 20*binomial(x+5,5) + 6*binomial(x+4,4). - Peter Bala, Jun 24 2023

Examples

			Triangle begins:
[1] 1
[2] 4,    3
[3] 15,   20,    6
[4] 56,   105,   60,    10
[5] 210,  504,   420,   140,  15
[6] 792,  2310,  2520,  1260, 280,  21
[7] 3003, 10296, 13860, 9240, 3150, 504, 28
...
		

Crossrefs

Cf. A001791 (T(n,1)), A000217 (T(n,n)), A026002 (row sums), A000012 (alternating row sum), A051924 (number of clusters of type D_n).

Programs

  • PARI
    row(n) = vector(n, k, k--; (n-k)*binomial(n,k)*binomial(2*n-k, n-1)/n); \\ Michel Marcus, Sep 30 2021
  • Sage
    def T_row(n):
        return [(n-k)*binomial(n,k)*binomial(2*n-k,n-1)//n for k in range(n)]
    for n in range(1, 8): print(T_row(n))
    

Formula

T(n, k) = (n-k)*binomial(n,k)*binomial(2*n-k, n-1)/n, for n >= 1 and 0 <= k < n.
From Peter Bala, Jun 24 2023: (Start)
As conjectured above by Chapoton we have
Sum_{k = 0..n-1} T(n,k)*(x - 1)^k = Sum_{k = 0..n-1} A062196(n-1,k)*x^k and
Sum_{k = 0..n-1} T(n,k)*(-2)^k = (-1)^floor(n/2)*A089849(n) for n >= 1 (both easily verified using the WZ algorithm). (End)