A345013 Triangle read by rows, related to clusters of type D.
1, 4, 3, 15, 20, 6, 56, 105, 60, 10, 210, 504, 420, 140, 15, 792, 2310, 2520, 1260, 280, 21, 3003, 10296, 13860, 9240, 3150, 504, 28, 11440, 45045, 72072, 60060, 27720, 6930, 840, 36
Offset: 1
Examples
Triangle begins: [1] 1 [2] 4, 3 [3] 15, 20, 6 [4] 56, 105, 60, 10 [5] 210, 504, 420, 140, 15 [6] 792, 2310, 2520, 1260, 280, 21 [7] 3003, 10296, 13860, 9240, 3150, 504, 28 ...
Crossrefs
Programs
-
PARI
row(n) = vector(n, k, k--; (n-k)*binomial(n,k)*binomial(2*n-k, n-1)/n); \\ Michel Marcus, Sep 30 2021
-
Sage
def T_row(n): return [(n-k)*binomial(n,k)*binomial(2*n-k,n-1)//n for k in range(n)] for n in range(1, 8): print(T_row(n))
Formula
T(n, k) = (n-k)*binomial(n,k)*binomial(2*n-k, n-1)/n, for n >= 1 and 0 <= k < n.
From Peter Bala, Jun 24 2023: (Start)
As conjectured above by Chapoton we have
Sum_{k = 0..n-1} T(n,k)*(x - 1)^k = Sum_{k = 0..n-1} A062196(n-1,k)*x^k and
Sum_{k = 0..n-1} T(n,k)*(-2)^k = (-1)^floor(n/2)*A089849(n) for n >= 1 (both easily verified using the WZ algorithm). (End)
Comments