cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345230 a(n) = Sum_{1 <= x_1 <= x_2 <= ... <= x_n <= n} gcd(x_1, x_2, ..., x_n).

Original entry on oeis.org

0, 1, 4, 13, 44, 140, 512, 1782, 6652, 24682, 93599, 354341, 1359470, 5210328, 20098886, 77621774, 300797854, 1167164438, 4539201401, 17674941735, 68933414989, 269143872226, 1052114789548, 4116808923486, 16124224585644, 63205911146740, 247961982954952
Offset: 0

Views

Author

Seiichi Manyama, Jun 11 2021

Keywords

Crossrefs

Main diagonal of A345229.

Programs

  • Maple
    a:= n-> coeff(series((1/(1-x))* add(numtheory[phi](k)
             *x^k/(1-x^k)^n, k=1..n), x, n+1), x, n):
    seq(a(n), n=0..26);  # Alois P. Heinz, Jun 11 2021
  • Mathematica
    a[n_] := Sum[DivisorSum[k, EulerPhi[k/#] * Binomial[n + # - 2, n - 1] &], {k, 1, n}]; Array[a, 30, 0] (* Amiram Eldar, Jun 11 2021 *)
  • PARI
    a(n) = sum(k=1, n, sumdiv(k, d, eulerphi(k/d)*binomial(d+n-2, n-1)));
    
  • PARI
    a(n) = sum(k=1, n, eulerphi(k)*binomial(n\k+n-1, n)); \\ Seiichi Manyama, Sep 13 2024

Formula

a(n) = Sum_{k=1..n} Sum_{d|k} phi(k/d) * binomial(d+n-2, n-1).
a(n) = [x^n] (1/(1 - x)) * Sum_{k >= 1} phi(k) * x^k/(1 - x^k)^n.
a(n) ~ 2^(2*n-1) / sqrt(Pi*n). - Vaclav Kotesovec, Jun 11 2021
a(n) = Sum_{k=1..n} phi(k) * binomial(floor(n/k)+n-1,n). - Seiichi Manyama, Sep 13 2024