A345321 Sum of the divisors of n whose cube does not divide n.
0, 2, 3, 6, 5, 11, 7, 12, 12, 17, 11, 27, 13, 23, 23, 28, 17, 38, 19, 41, 31, 35, 23, 57, 30, 41, 36, 55, 29, 71, 31, 60, 47, 53, 47, 90, 37, 59, 55, 87, 41, 95, 43, 83, 77, 71, 47, 121, 56, 92, 71, 97, 53, 116, 71, 117, 79, 89, 59, 167, 61, 95, 103, 120, 83, 143, 67, 125, 95
Offset: 1
Keywords
Examples
a(16) = 28; The divisors of 16 whose cube does not divide 16 are: 4, 8 and 16. The sum of these divisors is then 4 + 8 + 16 = 28.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
Table[Sum[k (Ceiling[n/k^3] - Floor[n/k^3]) (1 - Ceiling[n/k] + Floor[n/k]), {k, n}], {n, 80}] Table[Total[Select[Divisors[n],Mod[n,#^3]!=0&]],{n,100}] (* Harvey P. Dale, May 01 2022 *)
-
PARI
a(n) = sumdiv(n, d, if (n % d^3, d)); \\ Michel Marcus, Jun 13 2021 (Python 3.8+) from math import prod from sympy import factorint def A345321(n): f = factorint(n).items() return prod((p**(q+1)-1)//(p-1) for p, q in f) - prod((p**(q//3+1)-1)//(p-1) for p, q in f) # Chai Wah Wu, Jun 14 2021
Formula
a(n) = Sum_{k=1..n} k * (ceiling(n/k^3) - floor(n/k^3)) * (1 - ceiling(n/k) + floor(n/k)).