A345368
a(n) = Sum_{k=0..n} binomial(5*k,k) / (4*k + 1).
Original entry on oeis.org
1, 2, 7, 42, 327, 2857, 26608, 258488, 2588933, 26539288, 277082658, 2936050788, 31494394563, 341325970323, 3731742758203, 41108999917483, 455850863463768, 5084213586320193, 56997201842602368, 641906808539396253, 7258985455500009623, 82393287049581399283
Offset: 0
-
Table[Sum[Binomial[5 k, k]/(4 k + 1), {k, 0, n}], {n, 0, 21}]
nmax = 21; A[] = 0; Do[A[x] = 1/(1 - x) + x (1 - x)^4 A[x]^5 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
-
a(n) = sum(k=0, n, binomial(5*k, k)/(4*k+1)); \\ Michel Marcus, Jul 28 2021
A346065
a(n) = Sum_{k=0..n} binomial(6*k,k) / (5*k + 1).
Original entry on oeis.org
1, 2, 8, 59, 565, 6046, 68878, 818276, 10021910, 125629220, 1603943486, 20783993414, 272641113110, 3613484662965, 48313969712685, 650888627139801, 8826840286257595, 120398870546499685, 1650711840886884265, 22735860619151166130, 314441081323870331656
Offset: 0
-
Table[Sum[Binomial[6 k, k]/(5 k + 1), {k, 0, n}], {n, 0, 20}]
nmax = 20; A[] = 0; Do[A[x] = 1/(1 - x) + x (1 - x)^5 A[x]^6 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
-
a(n) = sum(k=0, n, binomial(6*k, k)/(5*k+1)); \\ Michel Marcus, Jul 28 2021
A346671
a(n) = Sum_{k=0..n} binomial(7*k,k) / (6*k + 1).
Original entry on oeis.org
1, 2, 9, 79, 898, 11370, 153148, 2150836, 31140511, 461462144, 6964815000, 106691488130, 1654539334220, 25923944408960, 409770113121064, 6526344613981944, 104632592920840659, 1687270854882480906, 27348675382672733281, 445328790513987869681, 7281393330439106226281
Offset: 0
-
Table[Sum[Binomial[7 k, k]/(6 k + 1), {k, 0, n}], {n, 0, 20}]
nmax = 20; A[] = 0; Do[A[x] = 1/(1 - x) + x (1 - x)^6 A[x]^7 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
-
a(n) = sum(k=0, n, binomial(7*k, k)/(6*k+1)); \\ Michel Marcus, Jul 28 2021
A346672
a(n) = Sum_{k=0..n} binomial(8*k,k) / (7*k + 1).
Original entry on oeis.org
1, 2, 10, 102, 1342, 19620, 305004, 4943352, 82595376, 1412486081, 24602515801, 434935956337, 7783978950825, 140752989839105, 2567623696254905, 47195200645619009, 873239636055018809, 16251426606785706209, 304007720310330530081, 5713101394865420846381
Offset: 0
-
Table[Sum[Binomial[8 k, k]/(7 k + 1), {k, 0, n}], {n, 0, 19}]
nmax = 19; A[] = 0; Do[A[x] = 1/(1 - x) + x (1 - x)^7 A[x]^8 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
-
a(n) = sum(k=0, n, binomial(8*k, k)/(7*k+1)); \\ Michel Marcus, Jul 28 2021
A346680
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(4*k,k) / (3*k + 1).
Original entry on oeis.org
1, 0, 4, 18, 122, 847, 6237, 47583, 373149, 2989111, 24354777, 201214021, 1681719343, 14193619647, 120800146953, 1035593096367, 8934344395053, 77510878324671, 675799844685937, 5918354494345863, 52037647837001257, 459200394617540288, 4065477723321641932
Offset: 0
-
Table[Sum[(-1)^(n - k) Binomial[4 k, k]/(3 k + 1), {k, 0, n}], {n, 0, 22}]
nmax = 22; A[] = 0; Do[A[x] = 1/(1 + x) + x (1 + x)^3 A[x]^4 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
-
a(n) = sum(k=0, n, (-1)^(n-k)*binomial(4*k, k)/(3*k + 1)); \\ Michel Marcus, Jul 29 2021
Showing 1-5 of 5 results.
Comments