A345368
a(n) = Sum_{k=0..n} binomial(5*k,k) / (4*k + 1).
Original entry on oeis.org
1, 2, 7, 42, 327, 2857, 26608, 258488, 2588933, 26539288, 277082658, 2936050788, 31494394563, 341325970323, 3731742758203, 41108999917483, 455850863463768, 5084213586320193, 56997201842602368, 641906808539396253, 7258985455500009623, 82393287049581399283
Offset: 0
-
Table[Sum[Binomial[5 k, k]/(4 k + 1), {k, 0, n}], {n, 0, 21}]
nmax = 21; A[] = 0; Do[A[x] = 1/(1 - x) + x (1 - x)^4 A[x]^5 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
-
a(n) = sum(k=0, n, binomial(5*k, k)/(4*k+1)); \\ Michel Marcus, Jul 28 2021
A346065
a(n) = Sum_{k=0..n} binomial(6*k,k) / (5*k + 1).
Original entry on oeis.org
1, 2, 8, 59, 565, 6046, 68878, 818276, 10021910, 125629220, 1603943486, 20783993414, 272641113110, 3613484662965, 48313969712685, 650888627139801, 8826840286257595, 120398870546499685, 1650711840886884265, 22735860619151166130, 314441081323870331656
Offset: 0
-
Table[Sum[Binomial[6 k, k]/(5 k + 1), {k, 0, n}], {n, 0, 20}]
nmax = 20; A[] = 0; Do[A[x] = 1/(1 - x) + x (1 - x)^5 A[x]^6 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
-
a(n) = sum(k=0, n, binomial(6*k, k)/(5*k+1)); \\ Michel Marcus, Jul 28 2021
A346672
a(n) = Sum_{k=0..n} binomial(8*k,k) / (7*k + 1).
Original entry on oeis.org
1, 2, 10, 102, 1342, 19620, 305004, 4943352, 82595376, 1412486081, 24602515801, 434935956337, 7783978950825, 140752989839105, 2567623696254905, 47195200645619009, 873239636055018809, 16251426606785706209, 304007720310330530081, 5713101394865420846381
Offset: 0
-
Table[Sum[Binomial[8 k, k]/(7 k + 1), {k, 0, n}], {n, 0, 19}]
nmax = 19; A[] = 0; Do[A[x] = 1/(1 - x) + x (1 - x)^7 A[x]^8 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
-
a(n) = sum(k=0, n, binomial(8*k, k)/(7*k+1)); \\ Michel Marcus, Jul 28 2021
A345367
a(n) = Sum_{k=0..n} binomial(4*k,k) / (3*k + 1).
Original entry on oeis.org
1, 2, 6, 28, 168, 1137, 8221, 62041, 482773, 3845033, 31188921, 256757719, 2139691083, 18015030073, 153008796673, 1309402039993, 11279339531413, 97724562251137, 851035285261745, 7445189624293545, 65401191955640665, 576639234410182210, 5101317352349364430
Offset: 0
-
Table[Sum[Binomial[4 k, k]/(3 k + 1), {k, 0, n}], {n, 0, 22}]
nmax = 22; A[] = 0; Do[A[x] = 1/(1 - x) + x (1 - x)^3 A[x]^4 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
-
a(n) = sum(k=0, n, binomial(4*k, k)/(3*k+1)); \\ Michel Marcus, Jul 28 2021
A349363
G.f. A(x) satisfies: A(x) = 1 + x * A(x)^7 / (1 + x).
Original entry on oeis.org
1, 1, 6, 57, 629, 7589, 96942, 1288729, 17643920, 247089010, 3522891561, 50964747400, 746241617226, 11038241689188, 164696773030055, 2475832560808858, 37462189433509758, 570112127356828846, 8720472842436039280, 133997057207982607092, 2067402314984991892461
Offset: 0
-
a:= n-> coeff(series(RootOf(1+x*A^7/(1+x)-A, A), x, n+1), x, n):
seq(a(n), n=0..20); # Alois P. Heinz, Nov 15 2021
-
nmax = 20; A[] = 0; Do[A[x] = 1 + x A[x]^7/(1 + x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
Table[Sum[(-1)^(n - k) Binomial[n - 1, k - 1] Binomial[7 k, k]/(6 k + 1), {k, 0, n}], {n, 0, 20}]
A346683
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(7*k,k) / (6*k + 1).
Original entry on oeis.org
1, 0, 7, 63, 756, 9716, 132062, 1865626, 27124049, 403197584, 6100155272, 93626517858, 1454221328232, 22815183746508, 361030984965596, 5755543515895284, 92350704790963431, 1490287557170676816, 24171116970619575559, 393808998160695560841, 6442255541764422795759
Offset: 0
-
Table[Sum[(-1)^(n - k) Binomial[7 k, k]/(6 k + 1), {k, 0, n}], {n, 0, 20}]
nmax = 20; A[] = 0; Do[A[x] = 1/(1 + x) + x (1 + x)^6 A[x]^7 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
-
a(n) = sum(k=0, n, (-1)^(n-k)*binomial(7*k, k)/(6*k + 1)); \\ Michel Marcus, Jul 29 2021
Showing 1-6 of 6 results.
Comments