cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A344034 Numbers that are the sum of five positive cubes in four or more ways.

Original entry on oeis.org

1252, 1376, 1461, 1522, 1548, 1585, 1590, 1646, 1702, 1709, 1737, 1739, 1765, 1772, 1798, 1802, 1810, 1864, 1889, 1954, 1980, 1987, 2006, 2033, 2043, 2081, 2096, 2104, 2152, 2160, 2195, 2225, 2241, 2250, 2251, 2276, 2313, 2322, 2339, 2341, 2367, 2374, 2377, 2416, 2423, 2430, 2449, 2456, 2458, 2465, 2467, 2486
Offset: 1

Views

Author

David Consiglio, Jr., May 07 2021

Keywords

Examples

			1461 = 1^3 + 1^3 + 1^3 + 9^3 +  9^3
     = 1^3 + 1^3 + 4^3 + 4^3 + 11^3
     = 3^3 + 3^3 + 4^3 + 7^3 + 10^3
     = 6^3 + 6^3 + 7^3 + 7^3 +  7^3
so 1461 is a term of this sequence.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1,50)]
    for pos in cwr(power_terms,5):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k,v in keep.items() if v >= 4])
    for x in range(len(rets)):
        print(rets[x])

A345512 Numbers that are the sum of six cubes in three or more ways.

Original entry on oeis.org

221, 254, 369, 411, 443, 469, 495, 502, 576, 595, 600, 626, 648, 658, 684, 704, 711, 720, 739, 746, 753, 760, 765, 767, 772, 774, 779, 786, 793, 811, 818, 828, 830, 835, 837, 844, 854, 856, 863, 866, 873, 874, 880, 884, 886, 891, 892, 893, 899, 905, 910, 919
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			254 is a term because 254 = 1^3 + 1^3 + 1^3 + 1^3 + 4^3 + 4^3 = 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 5^3 = 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 3])
        for x in range(len(rets)):
            print(rets[x])

A345514 Numbers that are the sum of six cubes in five or more ways.

Original entry on oeis.org

1045, 1169, 1241, 1260, 1377, 1384, 1432, 1440, 1488, 1495, 1530, 1539, 1549, 1556, 1558, 1584, 1586, 1594, 1595, 1602, 1612, 1617, 1640, 1647, 1654, 1657, 1673, 1675, 1677, 1703, 1710, 1712, 1715, 1719, 1729, 1736, 1738, 1745, 1747, 1754, 1764, 1766, 1771
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			1169 is a term because 1169 = 1^3 + 2^3 + 2^3 + 3^3 + 4^3 + 9^3 = 1^3 + 2^3 + 5^3 + 5^3 + 5^3 + 7^3 = 1^3 + 3^3 + 4^3 + 4^3 + 4^3 + 8^3 = 2^3 + 3^3 + 3^3 + 4^3 + 5^3 + 8^3 = 3^3 + 3^3 + 3^3 + 3^3 + 7^3 + 7^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 5])
        for x in range(len(rets)):
            print(rets[x])

A345522 Numbers that are the sum of seven cubes in four or more ways.

Original entry on oeis.org

470, 496, 503, 603, 627, 634, 653, 659, 685, 690, 692, 711, 712, 747, 751, 754, 761, 766, 768, 773, 775, 777, 780, 783, 787, 792, 794, 812, 813, 829, 831, 836, 838, 842, 843, 845, 857, 859, 864, 867, 871, 874, 875, 881, 883, 885, 890, 892, 894, 899, 900, 901
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			496 is a term because 496 = 1^3 + 1^3 + 1^3 + 3^3 + 4^3 + 4^3 + 5^3 = 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 5^3 + 5^3 = 1^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 6^3 = 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 7):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 4])
        for x in range(len(rets)):
            print(rets[x])

A345561 Numbers that are the sum of six fourth powers in four or more ways.

Original entry on oeis.org

6626, 6691, 6866, 9251, 9491, 10115, 10706, 10786, 11555, 12595, 14225, 14691, 14771, 15315, 15330, 15395, 15570, 16051, 16595, 16610, 16660, 16675, 16850, 17090, 17091, 17236, 17316, 17331, 17346, 17860, 17875, 17940, 17955, 18195, 18786, 18851, 18866, 19155
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			6691 is a term because 6691 = 1^4 + 1^4 + 1^4 + 6^4 + 6^4 + 8^4 = 1^4 + 2^4 + 2^4 + 2^4 + 3^4 + 9^4 = 2^4 + 2^4 + 3^4 + 3^4 + 7^4 + 8^4 = 3^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 4])
        for x in range(len(rets)):
            print(rets[x])

A345766 Numbers that are the sum of six cubes in exactly four ways.

Original entry on oeis.org

626, 830, 837, 856, 873, 891, 947, 954, 982, 1008, 1026, 1052, 1053, 1071, 1094, 1097, 1106, 1109, 1134, 1143, 1150, 1153, 1172, 1195, 1208, 1227, 1234, 1253, 1267, 1278, 1279, 1283, 1286, 1290, 1297, 1316, 1323, 1324, 1358, 1361, 1368, 1369, 1376, 1395, 1403
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345513 at term 12 because 1045 = 1^3 + 1^3 + 2^3 + 2^3 + 3^3 + 10^3 = 1^3 + 1^3 + 4^3 + 5^3 + 5^3 + 9^3 = 1^3 + 2^3 + 3^3 + 4^3 + 6^3 + 9^3 = 3^3 + 3^3 + 6^3 + 6^3 + 6^3 + 7^3 = 4^3 + 4^3 + 4^3 + 5^3 + 6^3 + 8^3.

Examples

			830 is a term because 830 = 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 8^3 = 1^3 + 3^3 + 3^3 + 5^3 + 5^3 + 6^3 = 1^3 + 3^3 + 3^3 + 3^3 + 4^3 + 7^3 = 2^3 + 2^3 + 3^3 + 3^3 + 6^3 + 6^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 4])
        for x in range(len(rets)):
            print(rets[x])

A344808 Numbers that are the sum of six squares in four or more ways.

Original entry on oeis.org

36, 41, 44, 45, 53, 54, 56, 57, 60, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			41 = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 6^2
   = 1^2 + 1^2 + 1^2 + 2^2 + 3^2 + 5^2
   = 1^2 + 2^2 + 3^2 + 3^2 + 3^2 + 3^2
   = 2^2 + 2^2 + 2^2 + 2^2 + 3^2 + 4^2
so 41 is a term.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**2 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 4])
        for x in range(len(rets)):
            print(rets[x])
Showing 1-7 of 7 results.