cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A345593 Numbers that are the sum of nine fourth powers in nine or more ways.

Original entry on oeis.org

8259, 9299, 9539, 10709, 10819, 10884, 10949, 10964, 11124, 11444, 11573, 11668, 11684, 11924, 12099, 12164, 12339, 12404, 12549, 12708, 12773, 12853, 12918, 12948, 13013, 13139, 13204, 13269, 13284, 13349, 13379, 13444, 13509, 13524, 13589, 13764, 13829
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			9299 is a term because 9299 = 1^4 + 1^4 + 1^4 + 2^4 + 6^4 + 6^4 + 6^4 + 6^4 + 8^4 = 1^4 + 1^4 + 3^4 + 4^4 + 4^4 + 4^4 + 4^4 + 8^4 + 8^4 = 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 2^4 + 4^4 + 7^4 + 9^4 = 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 6^4 + 6^4 + 9^4 = 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 4^4 + 7^4 + 7^4 + 8^4 = 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 6^4 + 6^4 + 7^4 + 8^4 = 2^4 + 2^4 + 4^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4 + 7^4 = 2^4 + 3^4 + 4^4 + 4^4 + 6^4 + 6^4 + 6^4 + 7^4 + 7^4 = 3^4 + 3^4 + 4^4 + 4^4 + 4^4 + 4^4 + 4^4 + 6^4 + 9^4 = 3^4 + 3^4 + 4^4 + 6^4 + 6^4 + 6^4 + 6^4 + 6^4 + 7^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 9):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 9])
        for x in range(len(rets)):
            print(rets[x])

A345549 Numbers that are the sum of nine cubes in ten or more ways.

Original entry on oeis.org

966, 971, 978, 985, 992, 1004, 1011, 1018, 1022, 1048, 1055, 1056, 1062, 1063, 1074, 1076, 1078, 1081, 1083, 1085, 1088, 1092, 1093, 1095, 1097, 1098, 1100, 1102, 1104, 1107, 1109, 1111, 1112, 1114, 1117, 1118, 1119, 1121, 1123, 1124, 1126, 1128, 1130, 1133
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			971 is a term because 971 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 5^3 + 6^3 + 6^3 = 1^3 + 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 5^3 + 5^3 + 7^3 = 1^3 + 1^3 + 1^3 + 4^3 + 4^3 + 4^3 + 4^3 + 4^3 + 6^3 = 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 4^3 + 8^3 = 1^3 + 1^3 + 2^3 + 3^3 + 4^3 + 4^3 + 4^3 + 5^3 + 6^3 = 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 6^3 + 6^3 = 1^3 + 2^3 + 2^3 + 3^3 + 3^3 + 4^3 + 5^3 + 5^3 + 6^3 = 1^3 + 2^3 + 2^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 7^3 = 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 4^3 + 6^3 + 6^3 = 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 5^3 + 7^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 9):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 10])
        for x in range(len(rets)):
            print(rets[x])

A345585 Numbers that are the sum of eight fourth powers in ten or more ways.

Original entry on oeis.org

17972, 17987, 19492, 19507, 19747, 20116, 20787, 21268, 21283, 21333, 21348, 21413, 21508, 21523, 21588, 21892, 21957, 22067, 22132, 22563, 22628, 23172, 23237, 23252, 23587, 23588, 23603, 23653, 23668, 23733, 23843, 23908, 24277, 24452, 24802, 24948, 25363
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			17987 is a term because 17987 = 1^4 + 1^4 + 1^4 + 6^4 + 6^4 + 6^4 + 8^4 + 10^4 = 1^4 + 2^4 + 2^4 + 2^4 + 3^4 + 6^4 + 9^4 + 10^4 = 1^4 + 2^4 + 5^4 + 6^4 + 6^4 + 8^4 + 8^4 + 9^4 = 2^4 + 2^4 + 2^4 + 2^4 + 4^4 + 5^4 + 7^4 + 11^4 = 2^4 + 2^4 + 2^4 + 3^4 + 5^4 + 6^4 + 6^4 + 11^4 = 2^4 + 2^4 + 3^4 + 3^4 + 6^4 + 7^4 + 8^4 + 10^4 = 2^4 + 4^4 + 4^4 + 4^4 + 7^4 + 7^4 + 7^4 + 10^4 = 2^4 + 4^4 + 5^4 + 7^4 + 7^4 + 8^4 + 8^4 + 8^4 = 3^4 + 4^4 + 4^4 + 6^4 + 6^4 + 7^4 + 7^4 + 10^4 = 3^4 + 5^4 + 6^4 + 6^4 + 7^4 + 8^4 + 8^4 + 8^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 8):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 10])
        for x in range(len(rets)):
            print(rets[x])

A345852 Numbers that are the sum of nine fourth powers in exactly ten ways.

Original entry on oeis.org

9299, 12708, 12948, 13269, 13349, 13524, 13589, 13764, 13829, 13893, 14133, 14228, 14468, 14564, 14869, 14934, 14964, 15014, 15094, 15109, 15174, 15189, 15333, 15428, 15429, 15524, 15588, 15604, 15653, 16214, 16229, 16469, 16564, 16644, 16773, 16883, 16948
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345594 at term 15 because 14804 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 8^4 + 8^4 + 9^4 = 1^4 + 1^4 + 1^4 + 4^4 + 6^4 + 6^4 + 6^4 + 8^4 + 9^4 = 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 11^4 = 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 7^4 + 8^4 + 8^4 + 8^4 = 1^4 + 1^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4 + 8^4 + 8^4 = 1^4 + 2^4 + 2^4 + 2^4 + 3^4 + 4^4 + 6^4 + 9^4 + 9^4 = 2^4 + 2^4 + 3^4 + 3^4 + 4^4 + 6^4 + 7^4 + 8^4 + 9^4 = 2^4 + 3^4 + 3^4 + 3^4 + 6^4 + 6^4 + 6^4 + 8^4 + 9^4 = 2^4 + 4^4 + 4^4 + 4^4 + 4^4 + 7^4 + 7^4 + 7^4 + 9^4 = 2^4 + 6^4 + 6^4 + 6^4 + 6^4 + 7^4 + 7^4 + 7^4 + 7^4 = 3^4 + 4^4 + 4^4 + 4^4 + 6^4 + 6^4 + 7^4 + 7^4 + 9^4.

Examples

			12708 is a term because 12708 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 4^4 + 7^4 + 10^4 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 6^4 + 6^4 + 10^4 = 1^4 + 1^4 + 1^4 + 5^4 + 6^4 + 6^4 + 6^4 + 8^4 + 8^4 = 1^4 + 2^4 + 2^4 + 2^4 + 3^4 + 5^4 + 6^4 + 8^4 + 9^4 = 1^4 + 2^4 + 4^4 + 4^4 + 5^4 + 6^4 + 6^4 + 7^4 + 9^4 = 1^4 + 3^4 + 4^4 + 5^4 + 6^4 + 6^4 + 6^4 + 6^4 + 9^4 = 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 7^4 + 10^4 = 2^4 + 2^4 + 3^4 + 3^4 + 5^4 + 6^4 + 7^4 + 8^4 + 8^4 = 2^4 + 4^4 + 4^4 + 4^4 + 5^4 + 7^4 + 7^4 + 7^4 + 8^4 = 3^4 + 4^4 + 4^4 + 5^4 + 6^4 + 6^4 + 7^4 + 7^4 + 8^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 9):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 10])
        for x in range(len(rets)):
            print(rets[x])

A345603 Numbers that are the sum of ten fourth powers in ten or more ways.

Original entry on oeis.org

6885, 7990, 8035, 8100, 8165, 8275, 8340, 8515, 8565, 8580, 9140, 9205, 9235, 9285, 9300, 9315, 9380, 9445, 9495, 9510, 9540, 9555, 9620, 9670, 9685, 9750, 9795, 9830, 9860, 9924, 9925, 9990, 10005, 10164, 10294, 10340, 10374, 10404, 10420, 10515, 10534
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			7990 is a term because 7990 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 6^4 + 6^4 + 6^4 + 8^4 = 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 3^4 + 6^4 + 9^4 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 3^4 + 6^4 + 7^4 + 8^4 = 1^4 + 1^4 + 1^4 + 2^4 + 4^4 + 4^4 + 4^4 + 7^4 + 7^4 + 7^4 = 1^4 + 1^4 + 1^4 + 3^4 + 4^4 + 4^4 + 6^4 + 6^4 + 7^4 + 7^4 = 1^4 + 4^4 + 4^4 + 4^4 + 5^4 + 5^4 + 5^4 + 5^4 + 5^4 + 8^4 = 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 4^4 + 4^4 + 7^4 + 7^4 + 7^4 = 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 4^4 + 6^4 + 6^4 + 7^4 + 7^4 = 3^4 + 3^4 + 3^4 + 3^4 + 3^4 + 4^4 + 4^4 + 4^4 + 4^4 + 9^4 = 3^4 + 3^4 + 3^4 + 3^4 + 3^4 + 6^4 + 6^4 + 6^4 + 6^4 + 7^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 10):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 10])
        for x in range(len(rets)):
            print(rets[x])

A345627 Numbers that are the sum of nine fifth powers in ten or more ways.

Original entry on oeis.org

4157156, 4492410, 4510461, 4915538, 4948274, 5005474, 5015506, 5179747, 5219655, 5252477, 5739988, 5756794, 6323426, 6326519, 6382443, 6423394, 6654999, 6705284, 6793170, 6861218, 7101038, 7147645, 7147656, 7148679, 7266240, 7280391, 7283268, 7314187, 7413493
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			4492410 is a term because 4492410 = 1^5 + 1^5 + 2^5 + 3^5 + 5^5 + 7^5 + 7^5 + 13^5 + 21^5 = 1^5 + 2^5 + 6^5 + 10^5 + 11^5 + 11^5 + 14^5 + 16^5 + 19^5 = 1^5 + 6^5 + 7^5 + 8^5 + 9^5 + 9^5 + 14^5 + 18^5 + 18^5 = 2^5 + 5^5 + 6^5 + 6^5 + 7^5 + 15^5 + 15^5 + 16^5 + 18^5 = 2^5 + 5^5 + 6^5 + 10^5 + 10^5 + 11^5 + 11^5 + 15^5 + 20^5 = 3^5 + 3^5 + 7^5 + 7^5 + 9^5 + 12^5 + 13^5 + 18^5 + 18^5 = 3^5 + 3^5 + 8^5 + 8^5 + 8^5 + 12^5 + 12^5 + 17^5 + 19^5 = 3^5 + 4^5 + 6^5 + 7^5 + 8^5 + 13^5 + 14^5 + 16^5 + 19^5 = 4^5 + 4^5 + 4^5 + 7^5 + 11^5 + 11^5 + 13^5 + 18^5 + 18^5 = 4^5 + 4^5 + 6^5 + 8^5 + 8^5 + 9^5 + 16^5 + 17^5 + 18^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 9):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 10])
        for x in range(len(rets)):
            print(rets[x])
Showing 1-6 of 6 results.