cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A345584 Numbers that are the sum of eight fourth powers in nine or more ways.

Original entry on oeis.org

15427, 16692, 17348, 17493, 17972, 17987, 18052, 18227, 19267, 19412, 19492, 19507, 19572, 19747, 19748, 20116, 20787, 20852, 21268, 21283, 21333, 21348, 21413, 21443, 21493, 21508, 21523, 21588, 21637, 21652, 21653, 21827, 21877, 21892, 21957, 21972, 22037
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			16692 is a term because 16692 = 1^4 + 1^4 + 1^4 + 1^4 + 6^4 + 6^4 + 8^4 + 10^4 = 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 3^4 + 9^4 + 10^4 = 1^4 + 1^4 + 2^4 + 5^4 + 6^4 + 8^4 + 8^4 + 9^4 = 1^4 + 2^4 + 2^4 + 2^4 + 3^4 + 5^4 + 6^4 + 11^4 = 1^4 + 2^4 + 2^4 + 3^4 + 3^4 + 7^4 + 8^4 + 10^4 = 1^4 + 3^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4 + 10^4 = 1^4 + 3^4 + 5^4 + 6^4 + 7^4 + 8^4 + 8^4 + 8^4 = 2^4 + 2^4 + 4^4 + 4^4 + 5^4 + 7^4 + 9^4 + 9^4 = 2^4 + 3^4 + 4^4 + 5^4 + 6^4 + 6^4 + 9^4 + 9^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 8):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 9])
        for x in range(len(rets)):
            print(rets[x])

A345592 Numbers that are the sum of nine fourth powers in eight or more ways.

Original entry on oeis.org

6804, 6869, 8019, 8084, 8259, 8324, 8499, 8564, 9044, 9124, 9219, 9234, 9284, 9299, 9364, 9429, 9474, 9494, 9539, 9604, 9669, 9749, 9779, 10148, 10259, 10293, 10339, 10388, 10453, 10514, 10579, 10628, 10644, 10709, 10754, 10789, 10819, 10884, 10949, 10964
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			6869 is a term because 6869 = 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 4^4 + 9^4 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 4^4 + 7^4 + 8^4 = 1^4 + 1^4 + 1^4 + 2^4 + 3^4 + 3^4 + 6^4 + 6^4 + 8^4 = 1^4 + 1^4 + 1^4 + 4^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4 = 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 9^4 = 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 7^4 + 8^4 = 2^4 + 3^4 + 3^4 + 3^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4 = 3^4 + 3^4 + 3^4 + 3^4 + 4^4 + 6^4 + 6^4 + 6^4 + 7^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 9):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 8])
        for x in range(len(rets)):
            print(rets[x])

A345851 Numbers that are the sum of nine fourth powers in exactly nine ways.

Original entry on oeis.org

8259, 9539, 10709, 10819, 10884, 10949, 10964, 11124, 11444, 11573, 11668, 11684, 11924, 12099, 12164, 12339, 12404, 12549, 12773, 12853, 12918, 13013, 13139, 13204, 13284, 13379, 13444, 13509, 13958, 13988, 14053, 14213, 14293, 14308, 14373, 14403, 14484
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345593 at term 2 because 9299 = 1^4 + 1^4 + 1^4 + 2^4 + 6^4 + 6^4 + 6^4 + 6^4 + 8^4 = 1^4 + 1^4 + 3^4 + 4^4 + 4^4 + 4^4 + 4^4 + 8^4 + 8^4 = 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 2^4 + 4^4 + 7^4 + 9^4 = 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 6^4 + 6^4 + 9^4 = 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 4^4 + 7^4 + 7^4 + 8^4 = 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 6^4 + 6^4 + 7^4 + 8^4 = 2^4 + 2^4 + 4^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4 + 7^4 = 2^4 + 3^4 + 4^4 + 4^4 + 6^4 + 6^4 + 6^4 + 7^4 + 7^4 = 3^4 + 3^4 + 4^4 + 4^4 + 4^4 + 4^4 + 4^4 + 6^4 + 9^4 = 3^4 + 3^4 + 4^4 + 6^4 + 6^4 + 6^4 + 6^4 + 6^4 + 7^4.

Examples

			9299 is a term because 9299 = 1^4 + 1^4 + 1^4 + 2^4 + 6^4 + 6^4 + 6^4 + 6^4 + 8^4 = 1^4 + 1^4 + 3^4 + 4^4 + 4^4 + 4^4 + 4^4 + 8^4 + 8^4 = 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 2^4 + 4^4 + 7^4 + 9^4 = 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 6^4 + 6^4 + 9^4 = 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 4^4 + 7^4 + 7^4 + 8^4 = 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 6^4 + 6^4 + 7^4 + 8^4 = 2^4 + 2^4 + 4^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4 + 7^4 = 2^4 + 3^4 + 4^4 + 4^4 + 6^4 + 6^4 + 6^4 + 7^4 + 7^4 = 3^4 + 3^4 + 4^4 + 4^4 + 4^4 + 4^4 + 4^4 + 6^4 + 9^4 = 3^4 + 3^4 + 4^4 + 6^4 + 6^4 + 6^4 + 6^4 + 6^4 + 7^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 9):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 9])
        for x in range(len(rets)):
            print(rets[x])

A345548 Numbers that are the sum of nine cubes in nine or more ways.

Original entry on oeis.org

859, 861, 896, 903, 922, 929, 935, 939, 959, 966, 971, 973, 978, 985, 992, 997, 999, 1004, 1009, 1011, 1016, 1018, 1020, 1022, 1023, 1027, 1029, 1030, 1034, 1035, 1036, 1037, 1041, 1046, 1048, 1055, 1056, 1059, 1060, 1062, 1063, 1064, 1065, 1066, 1067, 1071
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			861 is a term because 861 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 4^3 + 8^3 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 5^3 + 7^3 = 1^3 + 1^3 + 2^3 + 2^3 + 4^3 + 4^3 + 4^3 + 4^3 + 6^3 = 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 7^3 = 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 8^3 = 1^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3 + 4^3 + 5^3 + 6^3 = 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 5^3 + 5^3 + 6^3 = 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 3^3 + 4^3 + 7^3 = 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 4^3 + 4^3 + 5^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 9):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 9])
        for x in range(len(rets)):
            print(rets[x])

A345594 Numbers that are the sum of nine fourth powers in ten or more ways.

Original entry on oeis.org

9299, 12708, 12948, 13269, 13349, 13524, 13589, 13764, 13829, 13893, 14133, 14228, 14468, 14564, 14804, 14869, 14934, 14964, 15014, 15044, 15094, 15109, 15174, 15189, 15333, 15413, 15428, 15429, 15443, 15508, 15524, 15573, 15588, 15604, 15653, 15669, 15683
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			12708 is a term because 12708 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 4^4 + 7^4 + 10^4 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 6^4 + 6^4 + 10^4 = 1^4 + 1^4 + 1^4 + 5^4 + 6^4 + 6^4 + 6^4 + 8^4 + 8^4 = 1^4 + 2^4 + 2^4 + 2^4 + 3^4 + 5^4 + 6^4 + 8^4 + 9^4 = 1^4 + 2^4 + 4^4 + 4^4 + 5^4 + 6^4 + 6^4 + 7^4 + 9^4 = 1^4 + 3^4 + 4^4 + 5^4 + 6^4 + 6^4 + 6^4 + 6^4 + 9^4 = 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 7^4 + 10^4 = 2^4 + 2^4 + 3^4 + 3^4 + 5^4 + 6^4 + 7^4 + 8^4 + 8^4 = 2^4 + 4^4 + 4^4 + 4^4 + 5^4 + 7^4 + 7^4 + 7^4 + 8^4 = 3^4 + 4^4 + 4^4 + 5^4 + 6^4 + 6^4 + 7^4 + 7^4 + 8^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 9):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 10])
        for x in range(len(rets)):
            print(rets[x])

A345602 Numbers that are the sum of ten fourth powers in nine or more ways.

Original entry on oeis.org

6820, 6870, 6885, 6950, 7060, 7110, 7125, 7285, 7350, 7860, 7925, 7990, 8020, 8035, 8100, 8165, 8230, 8245, 8260, 8275, 8325, 8340, 8390, 8405, 8515, 8565, 8580, 8645, 8755, 8820, 8884, 8965, 8995, 9030, 9045, 9060, 9075, 9125, 9140, 9205, 9220, 9235, 9270
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			6870 is a term because 6870 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 4^4 + 9^4 = 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 4^4 + 7^4 + 8^4 = 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 3^4 + 3^4 + 6^4 + 6^4 + 8^4 = 1^4 + 1^4 + 1^4 + 1^4 + 4^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4 = 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 9^4 = 1^4 + 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 7^4 + 8^4 = 1^4 + 2^4 + 3^4 + 3^4 + 3^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4 = 1^4 + 3^4 + 3^4 + 3^4 + 3^4 + 4^4 + 6^4 + 6^4 + 6^4 + 7^4 = 2^4 + 2^4 + 2^4 + 5^4 + 5^4 + 5^4 + 5^4 + 5^4 + 6^4 + 7^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 10):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 9])
        for x in range(len(rets)):
            print(rets[x])

A345626 Numbers that are the sum of nine fifth powers in nine or more ways.

Original entry on oeis.org

1969221, 2596936, 3353186, 3378178, 3923426, 3981447, 4094027, 4096729, 4112329, 4114188, 4129465, 4137209, 4147736, 4157156, 4170112, 4172994, 4254304, 4303773, 4410482, 4475846, 4477936, 4483379, 4485480, 4492410, 4501441, 4510461, 4543232, 4652011, 4691855
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			2596936 is a term because 2596936 = 1^5 + 1^5 + 4^5 + 5^5 + 9^5 + 13^5 + 13^5 + 13^5 + 17^5 = 1^5 + 1^5 + 5^5 + 8^5 + 8^5 + 8^5 + 14^5 + 14^5 + 17^5 = 1^5 + 4^5 + 7^5 + 7^5 + 7^5 + 9^5 + 9^5 + 14^5 + 18^5 = 1^5 + 5^5 + 6^5 + 6^5 + 8^5 + 9^5 + 9^5 + 14^5 + 18^5 = 2^5 + 3^5 + 4^5 + 4^5 + 7^5 + 12^5 + 13^5 + 14^5 + 17^5 = 2^5 + 5^5 + 5^5 + 6^5 + 6^5 + 6^5 + 15^5 + 15^5 + 16^5 = 3^5 + 3^5 + 5^5 + 6^5 + 7^5 + 9^5 + 12^5 + 13^5 + 18^5 = 4^5 + 4^5 + 4^5 + 5^5 + 6^5 + 11^5 + 11^5 + 13^5 + 18^5 = 4^5 + 4^5 + 4^5 + 7^5 + 7^5 + 8^5 + 9^5 + 16^5 + 17^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 9):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 9])
        for x in range(len(rets)):
            print(rets[x])
Showing 1-7 of 7 results.