cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A345547 Numbers that are the sum of nine cubes in eight or more ways.

Original entry on oeis.org

744, 770, 805, 818, 840, 842, 844, 847, 859, 861, 866, 868, 877, 880, 883, 887, 894, 896, 903, 908, 909, 910, 911, 913, 915, 916, 920, 922, 929, 935, 939, 940, 945, 946, 948, 950, 952, 954, 955, 957, 959, 961, 964, 965, 966, 971, 972, 973, 976, 978, 983, 985
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			770 is a term because 770 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 8^3 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 4^3 + 7^3 = 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 2^3 + 3^3 + 6^3 + 6^3 = 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 5^3 + 7^3 = 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 5^3 + 6^3 = 1^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3 + 4^3 + 4^3 + 6^3 = 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 4^3 + 5^3 + 6^3 = 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 4^3 + 4^3 + 4^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 9):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 8])
        for x in range(len(rets)):
            print(rets[x])

A345583 Numbers that are the sum of eight fourth powers in eight or more ways.

Original entry on oeis.org

13268, 14212, 14788, 15427, 15667, 16612, 16627, 16692, 16707, 16772, 16822, 16852, 16882, 16947, 17348, 17363, 17428, 17493, 17877, 17972, 17987, 18052, 18117, 18227, 18948, 19157, 19237, 19252, 19267, 19412, 19492, 19507, 19572, 19682, 19747, 19748, 19828
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			14212 is a term because 14212 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 8^4 + 10^4 = 1^4 + 1^4 + 1^4 + 4^4 + 4^4 + 6^4 + 7^4 + 10^4 = 1^4 + 1^4 + 1^4 + 5^4 + 6^4 + 8^4 + 8^4 + 8^4 = 1^4 + 2^4 + 4^4 + 4^4 + 5^4 + 7^4 + 8^4 + 9^4 = 1^4 + 3^4 + 4^4 + 5^4 + 6^4 + 6^4 + 8^4 + 9^4 = 2^4 + 3^4 + 3^4 + 3^4 + 4^4 + 6^4 + 7^4 + 10^4 = 3^4 + 3^4 + 3^4 + 3^4 + 6^4 + 6^4 + 6^4 + 10^4 = 3^4 + 4^4 + 4^4 + 5^4 + 7^4 + 7^4 + 8^4 + 8^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 8):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 8])
        for x in range(len(rets)):
            print(rets[x])

A345591 Numbers that are the sum of nine fourth powers in seven or more ways.

Original entry on oeis.org

6739, 6804, 6854, 6869, 6979, 7029, 7044, 7094, 7109, 7269, 7284, 7844, 7909, 7939, 8004, 8019, 8084, 8149, 8194, 8244, 8259, 8309, 8324, 8389, 8434, 8499, 8564, 8628, 8739, 8868, 8979, 9044, 9059, 9124, 9189, 9219, 9234, 9254, 9284, 9299, 9364, 9414, 9429
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			6804 is a term because 6804 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 4^4 + 7^4 + 8^4 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 6^4 + 6^4 + 8^4 = 1^4 + 1^4 + 1^4 + 4^4 + 4^4 + 6^4 + 6^4 + 6^4 + 7^4 = 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 9^4 = 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 7^4 + 8^4 = 2^4 + 2^4 + 3^4 + 3^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4 = 2^4 + 3^4 + 3^4 + 3^4 + 4^4 + 6^4 + 6^4 + 6^4 + 7^4 = 3^4 + 3^4 + 3^4 + 3^4 + 6^4 + 6^4 + 6^4 + 6^4 + 6^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 9):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 7])
        for x in range(len(rets)):
            print(rets[x])

A345593 Numbers that are the sum of nine fourth powers in nine or more ways.

Original entry on oeis.org

8259, 9299, 9539, 10709, 10819, 10884, 10949, 10964, 11124, 11444, 11573, 11668, 11684, 11924, 12099, 12164, 12339, 12404, 12549, 12708, 12773, 12853, 12918, 12948, 13013, 13139, 13204, 13269, 13284, 13349, 13379, 13444, 13509, 13524, 13589, 13764, 13829
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			9299 is a term because 9299 = 1^4 + 1^4 + 1^4 + 2^4 + 6^4 + 6^4 + 6^4 + 6^4 + 8^4 = 1^4 + 1^4 + 3^4 + 4^4 + 4^4 + 4^4 + 4^4 + 8^4 + 8^4 = 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 2^4 + 4^4 + 7^4 + 9^4 = 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 6^4 + 6^4 + 9^4 = 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 4^4 + 7^4 + 7^4 + 8^4 = 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 6^4 + 6^4 + 7^4 + 8^4 = 2^4 + 2^4 + 4^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4 + 7^4 = 2^4 + 3^4 + 4^4 + 4^4 + 6^4 + 6^4 + 6^4 + 7^4 + 7^4 = 3^4 + 3^4 + 4^4 + 4^4 + 4^4 + 4^4 + 4^4 + 6^4 + 9^4 = 3^4 + 3^4 + 4^4 + 6^4 + 6^4 + 6^4 + 6^4 + 6^4 + 7^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 9):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 9])
        for x in range(len(rets)):
            print(rets[x])

A345850 Numbers that are the sum of nine fourth powers in exactly eight ways.

Original entry on oeis.org

6804, 6869, 8019, 8084, 8324, 8499, 8564, 9044, 9124, 9219, 9234, 9284, 9364, 9429, 9474, 9494, 9604, 9669, 9749, 9779, 10148, 10259, 10293, 10339, 10388, 10453, 10514, 10579, 10628, 10644, 10754, 10789, 11029, 11059, 11189, 11204, 11299, 11363, 11364, 11379
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345592 at term 5 because 8259 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 8^4 + 8^4 = 1^4 + 1^4 + 1^4 + 2^4 + 4^4 + 6^4 + 6^4 + 6^4 + 8^4 = 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 4^4 + 6^4 + 9^4 = 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 4^4 + 6^4 + 7^4 + 8^4 = 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 6^4 + 6^4 + 6^4 + 8^4 = 2^4 + 2^4 + 4^4 + 4^4 + 4^4 + 4^4 + 7^4 + 7^4 + 7^4 = 2^4 + 3^4 + 4^4 + 4^4 + 4^4 + 6^4 + 6^4 + 7^4 + 7^4 = 3^4 + 3^4 + 4^4 + 4^4 + 4^4 + 4^4 + 4^4 + 4^4 + 9^4 = 3^4 + 3^4 + 4^4 + 4^4 + 6^4 + 6^4 + 6^4 + 6^4 + 7^4.

Examples

			6869 is a term because 6869 = 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 4^4 + 9^4 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 4^4 + 7^4 + 8^4 = 1^4 + 1^4 + 1^4 + 2^4 + 3^4 + 3^4 + 6^4 + 6^4 + 8^4 = 1^4 + 1^4 + 1^4 + 4^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4 = 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 9^4 = 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 7^4 + 8^4 = 2^4 + 3^4 + 3^4 + 3^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4 = 3^4 + 3^4 + 3^4 + 3^4 + 4^4 + 6^4 + 6^4 + 6^4 + 7^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 9):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 8])
        for x in range(len(rets)):
            print(rets[x])

A345601 Numbers that are the sum of ten fourth powers in eight or more ways.

Original entry on oeis.org

6675, 6740, 6755, 6805, 6820, 6870, 6885, 6950, 6995, 7015, 7030, 7045, 7060, 7095, 7110, 7125, 7270, 7285, 7300, 7350, 7365, 7429, 7494, 7525, 7540, 7590, 7605, 7750, 7780, 7845, 7860, 7925, 7955, 7990, 8005, 8020, 8035, 8085, 8100, 8150, 8165, 8195, 8215
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			6740 is a term because 6740 = 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 6^4 + 6^4 + 8^4 = 1^4 + 1^4 + 1^4 + 1^4 + 4^4 + 6^4 + 6^4 + 6^4 + 6^4 + 6^4 = 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 9^4 = 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 7^4 + 8^4 = 1^4 + 2^4 + 2^4 + 2^4 + 3^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4 = 1^4 + 2^4 + 2^4 + 3^4 + 3^4 + 4^4 + 6^4 + 6^4 + 6^4 + 7^4 = 1^4 + 2^4 + 3^4 + 3^4 + 3^4 + 6^4 + 6^4 + 6^4 + 6^4 + 6^4 = 3^4 + 3^4 + 3^4 + 3^4 + 4^4 + 4^4 + 4^4 + 4^4 + 6^4 + 8^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 10):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 8])
        for x in range(len(rets)):
            print(rets[x])

A345625 Numbers that are the sum of nine fifth powers in eight or more ways.

Original entry on oeis.org

1431398, 1431640, 1531397, 1952415, 1969221, 2247917, 2530399, 2596936, 2652563, 2652860, 2736790, 2851254, 2965588, 3088909, 3148674, 3273590, 3297416, 3329120, 3329362, 3332244, 3336895, 3345442, 3345653, 3353186, 3361614, 3362217, 3364738, 3378178, 3553641
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			1431640 is a term because 1431640 = 1^5 + 2^5 + 3^5 + 6^5 + 7^5 + 12^5 + 12^5 + 13^5 + 14^5 = 1^5 + 2^5 + 3^5 + 7^5 + 7^5 + 11^5 + 11^5 + 14^5 + 14^5 = 1^5 + 3^5 + 5^5 + 8^5 + 8^5 + 8^5 + 8^5 + 14^5 + 15^5 = 1^5 + 4^5 + 6^5 + 7^5 + 7^5 + 8^5 + 9^5 + 12^5 + 16^5 = 2^5 + 2^5 + 3^5 + 4^5 + 10^5 + 11^5 + 11^5 + 12^5 + 15^5 = 2^5 + 4^5 + 4^5 + 6^5 + 8^5 + 8^5 + 9^5 + 14^5 + 15^5 = 3^5 + 3^5 + 3^5 + 3^5 + 10^5 + 10^5 + 10^5 + 13^5 + 15^5 = 3^5 + 3^5 + 5^5 + 6^5 + 7^5 + 8^5 + 11^5 + 11^5 + 16^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 9):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 8])
        for x in range(len(rets)):
            print(rets[x])
Showing 1-7 of 7 results.